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Abstract: This paper addresses the computation of the required trajectory correction
maneuvers (TCM) for a halo orbit space mission to compensate for the launch velocity
errors introduced by inaccuracies of the launch vehicle. By combining dynamical
systems theory with optimal control techniques, we produce a portrait of the complex
landscape of the trajectory design space. This approach enables parametric studies
not available to mission designers a few years ago, such as how the magnitude of the
errors and the timing of the first TCM affect the correction ∆V . The impetus for
combining dynamical systems theory and optimal control in this problem arises from
design issues for the Genesis Discovery mission being developed for NASA by the Jet
Propulsion Laboratory.
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1. INTRODUCTION AND BACKGROUND

The Genesis Mission Genesis is a solar wind
sample return mission (see Lo et al [1998]). It is
one of NASA’s first robotic sample return missions
and is scheduled for launch in January 2001 to a
halo orbit in the vicinity of the L1 Lagrange point,
one of the five equilibrium points in the three
body problem. L1 is unstable and lies between
the Sun and the Earth at roughly 1.5 million km
from the Earth in the direction of the Sun. Once
there, the spacecraft will remain for two years
to collect solar wind samples before returning
them to the Earth for study. Figure 1 shows the
Genesis halo orbit and the transfer and return
trajectories in a rotating frame. This rotating
frame is defined by fixing the X-axis along the
Sun-Earth line, the Z-axis in the ecliptic normal
direction, and with the Y -axis completing a right-

handed coordinate system. The Genesis trajectory

L1 L2

x (km)

y
(k

m
)

-1E+06 0 1E+06

-1E+06

-500000

0

500000

1E+06

L1 L2

x (km)

z
(k

m
)

-1E+06 0 1E+06

-1E+06

-500000

0

500000

1E+06

y (km)

z
(k

m
)

-1E+06 0 1E+06

-1E+06

-500000

0

500000

1E+06

0

500000

z

-1E+06

0

1E+06

x

-500000

0

500000

1E+06

y XY

Z

was designed using dynamical systems theory (see
Howell et al [1997]). The three year mission, from
launch all the way to Earth return, requires only



a single small deterministic maneuver (less than 6
m/s) when injecting onto the halo orbit!

Halo Orbit Halo orbits are large three dimen-
sional orbits shaped like the edges of a potato
chip. The computation of halo orbits follows stan-
dard nonlinear trajectory computation algorithms
based on parallel shooting.

The halo orbit, like the L1 equilibrium point, is
unstable. There is a family of asymptotic tra-
jectories that departs from the halo orbit called
the unstable manifold; similarly, there is a family
of asymptotic trajectories which wind onto the
halo orbit called the stable manifold. Each of
these families form a two dimensional surface that
is a twisted tubular surface eminating from the
halo orbit. For Genesis, these manifolds are cru-
cial for the mission design. The stable manifold,
which winds onto the halo orbit, is used to design
the transfer trajectory which delivers the Genesis
spacecraft from launch to insertion onto the halo
orbit (HOI). The unstable manifold, which winds
off of the halo orbit, is used to design the return
trajectory which brings the spacecraft and its
precious samples back to Earth via a heteroclinic
connection with L2. See Koon et al [1999] for the
current state of the computation of homoclinic
and heteroclinic orbits in this problem.

Transfer Trajectory The transfer trajectory is
designed using the following procedure. A halo
orbit H(t) is first selected, where t represents
time. The stable manifold (WS) of H consists
of a family of asymptotic trajectories which take
infinite time to wind onto H. Clearly, the exact
asymptotic solutions cannot be found numerically
and are impractical for space missions where the
transfer time needs to be just a few months.
Practically, there is a family of trajectories that lie
arbitrarily close to WS and that require just a few
months to transfer between Earth and the halo
orbit. A simple way to compute an approximation
of WS is based on Floquet theory.

In this paper, we will assume that the halo orbit,
H(t), and the stable manifold M(t) are fixed and
provided. We will not dwell further on their com-
putation which is well covered in the references.
Instead, let us turn our attention to the trajectory
correction maneuver (TCM) problem.

TCM Problem The most important error in the
launch of Genesis is the launch velocity error. The
one sigma expected error is 7 m/s for a boost of
approximately 3200 m/s from a circular 200 km
altitude Earth orbit. Such an error is rather large
because halo orbit missions are extremely sensi-
tive to launch errors. Typical planetary launches
can correct launch vehicle errors 7 to 14 days
after the launch. In contrast, halo orbit missions

must generally correct the launch error within the
first day after launch. This correction maneuver is
called TCM1, being the first TCM of any mission.

For orbits such as the Genesis transfer trajec-
tory, the correction maneuver, ∆V for change in
velocity, grows sharply in inverse proportion to
the time from launch. For a large launch vehicle
error, which is possible in Genesis’ case, the TCM1
can quickly grow beyond the capability of the
spacecraft’s propulsion system.

The Genesis spacecraft, built in the spirit of
NASA’s new low cost mission approach, is very
basic. This makes the performance of an early
TCM1 difficult and risky. It is desirable to de-
lay TCM1 as long as possible, even at the ex-
pense of expenditure of the ∆V budget. In fact,
Genesis would prefer TCM1 be performed at 2
to 7 days after launch, or even later. However,
beyond launch + 24 hours, the correction ∆V
based on traditional linear analysis can become
prohibitively high.

The desire to increase the time between launch
and TCM1 drives one to use a nonlinear approach,
based on combining dynamical systems theory
with optimal control techniques. We explore two
similar but slightly different approaches and are
able to obtain in both cases an optimal maneuver
strategy that fits within the Genesis ∆V budget of
450 m/s. (1) HOI technique: use optimal control
techniques to retarget the halo orbit with the
original nominal trajectory as the initial guess.
(2) MOI technique: we target the stable manifold.
Both methods yield good results.

2. OPTIMAL CONTROL FOR TRAJECTORY
CORRECTION MANEUVERS

We now introduce the general problem of opti-
mal control for dynamical systems. We start by
recasting the TCM problem as a spacecraft trajec-
tory planning problem. Mathematically they are
exactly the same. Then we discuss the spacecraft
trajectory planning problem as an optimization
problem and highlight the formulation character-
istics and particular solution requirements. Then
the fuel efficiency caused by possible perturbation
in the launch velocity and by different delay in
TCM1 is exactly the sensitivity analysis of the
optimal solution. The software we use is an excel-
lent tool in solving this type of problem, both in
providing a solution for the trajectory planning
problem with optimal control and in studying
the sensitivity of different parameters. COOPT is
developed by the Computational Science and En-
gineering Group at University of California Santa
Barbara (see Users’ Guide [1999]).



We emphasize that the objective in this work is
not to design the transfer trajectory, but rather
to investigate recovery issues related to possible
launch velocity errors. We therefore assume that
a nominal transfer trajectory (corresponding to
zero errors in launch velocity) is available. For the
nominal trajectory in our numerical experiments
in this paper, we do not use the actual Genesis
mission transfer trajectory, but rather an approx-
imation obtained with a restricted model.

Recast TCM as Trajectory Planning Prob-
lem We treat two distinct problems: (1) the halo
orbit insertion (HOI) problem, in which we target
the halo orbit, and (2) the stable manifold inser-
tion (MOI) problem, in which we target the stable
manifold associated with the halo orbit. Although
different from a dynamical systems’ perspective,
the two problems are very similar once cast as
optimization problems. In the HOI problem, a
final maneuver (jump in velocity) is allowed at
THOI = tmax, while in the MOI problem, the
final maneuver takes place on the stable manifold
at TMOI < tmax and no maneuver occurs at
THOI = tmax. A halo orbit insertion trajectory
design problem can be simply posed as:

Find the maneuver times and sizes to
minimize fuel consumption (∆V ) for a
trajectory starting near Earth and ending
on the specified L1 halo orbit at a position
and with a velocity consistent with the
HOI time.

We assume that the evolution of the spacecraft is
described by a generic set of six ODEs

x′ = f(t,x), (2.1)

where x = [xp;xv] ∈ R6 contains both positions
(xp) and velocities (xv). Eq. (2.1) can be ei-
ther the Circular Restricted Three Body Problem
(CR3BP) or a more complex model that incorpo-
rates the influence of the Moon and other planets.
In this paper, we use the CR3BP model; other
models will be investigated in future work.

In order to resolve the discontinuous nature of the
resulting optimal control problem, the equations
of motion (e.o.m.) are solved simultaneously on
each interval between two maneuvers. Let the
maneuvers M1,M2, ...,Mn take place at times
Ti, i = 1, 2, ..., n and let xi(t), t ∈ [Ti−1, Ti] be the
solution of Eq. (2.1) on the interval [Ti−1, Ti] (see
Figure 2). Continuity constraints at the position
level are imposed at each maneuver, that is,

xpi (Ti) = xpi+1(Ti), i = 1, 2, ..., n− 1. (2.2)

In addition, the final position is forced to lie
on the halo orbit, that is, xpn(Tn) = xpH(Tn),
where the halo orbit is parameterized by the HOI
time Tn. Additional constraints dictate that the
first maneuver (TCM1) is delayed by at least a
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prescribed amount TCM1min after launch, that
is,

T1 ≥ TCM1min, (2.3)

and that the order of maneuvers is respected,

Ti−1 < Ti < Ti+1, i = 1, 2, ..., n− 1. (2.4)

With a cost function defined as some measure of
the velocity discontinuities

∆vi = xvi+1(Ti)− xvi (Ti), i = 1, 2, ..., n− 1,
∆vn = xvH(Tn)− xvn(Tn),

(2.5)

the optimization problem becomes

min
Ti,xi,∆vi

f(∆vi), (2.6)

subject to the constraints in Eqns. (2.2)-(2.5).
More details on selecting the form of the cost
function are given in Section 3.

Launch Errors and Sensitivity Analysis In
many optimal control problems, obtaining an op-
timal solution is not the only goal. The influence
of problem parameters on the optimal solution
(the so called sensitivity of the optimal solution)
is also needed. In this paper, we are interested
in estimating the changes in fuel efficiency (∆V )
caused by possible perturbations in the launch
velocity (εv0) and by different delays in the first
maneuver (TCM1). As we show in Section 3,
the cost function is very close to being linear in
these parameters (TCM1min and εv0). Therefore,
evaluating the sensitivity of the optimal cost is
a very inexpensive and accurate (especially in
our problem) method of assesing the influence of
different parameters on the optimal trajectory.

In coopt, we make use of the Sensitivity The-
orem (Bertsekas [1995]) for nonlinear program-
ming problems with equality and/or inequality
constraints. The influence of delaying the ma-
neuver TCM1 is directly computed from the La-
grange multiplier associated with the constraint of
Eq. (2.3). To evaluate sensitivities of the cost func-
tion with respect to perturbations in the launch
velocity (εv0), we must include this perturbation
explicitly as an optimization parameter and fix
it to some prescribed value through an equality
constraint. That is, the launch velocity is set to

v(0) = vnom
0

(
1 +

εv0
‖vnom

0 ‖

)
, (2.7)



where vnom
0 is the nominal launch velocity and

εv0 = ε, ε given. (2.8)

The Lagrange multiplier associated with the con-
straint in Eq. (2.8) yields the desired sensitivity.

3. NUMERICAL RESULTS

Circular Restricted Three-Body Model As men-
tioned earlier, we use the equations of motion
derived under the CR3BP assumption as the un-
derlying dynamical model in Eq. (2.1). In this
model, it is assumed that the primaries (Earth and
Sun in our case) move on circular orbits around
the center of mass of the system and that the
third body (the spacecraft) does not influence
the motion of the primaries. In a rotating frame
and using nondimensional units, the equations of
motion in the CR3BP model are

ẍ = 2y +
∂U

∂x
; ÿ = −2x+

∂U

∂y
; z̈ =

∂U

∂z
(3.1)

where U = 1
2 (x2 + y2) + 1−µ

d�
+ µ

d⊕
, d�, d⊕ are

the distances between the spacecraft and the two
primaries, and µ is the ratio between the mass
of the Earth and the mass of the Sun-Earth
system. In the above equations, time is scaled by
the period of the primaries orbits (T/2π, where
T = 1 year), positions are scaled by the Sun-Earth
distance (L = 1.49597927 · 108km), and velocities
are scaled by the Earth’s average orbital speed
around the Sun (2πL/T = 29.80567km/s).

Choice of Cost Function. A physically mean-
ingful cost function is

f1(∆v) =
n∑
i=1

‖vi‖. (3.2)

This function is nondifferentiable when one of
the maneuvers vanishes. This problem occurs at
the first optimization iteration, as the intial guess
transfer trajectory has a single nonzero maneuver
at halo insertion. A differentiable cost function is

f2(∆v) =
n∑
i=1

‖vi‖2. (3.3)

Although this second cost function is more appro-
priate for the optimizer, it raises two new prob-
lems. Not only it is not as physically meaningful
as the cost function of Eq. (3.2), but, in some
particular cases, decreasing f2 may actually lead
to increases in f1.

To resolve these issues, we use the following three-
stage staggered optimization procedure:

(1) Starting with the nominal transfer trajec-
tory as intial guess, and allowing initially n
maneuvers, we minimize f2 to obtain a first
optimal trajectory, T ∗1 .

(2) Using T ∗1 as initial guess, we minimize f1 to
obtain T ∗2 . It is possible that during this op-
timization stage some maneuvers can become
very small. After each optimization iteration
we monitor the feasibility of the iterate and
the sizes of all maneuvers. As soon as at least
one maneuver decreases under a prescribed
threshold (0.1 m/s) at some fesible configu-
ration, we stop the optimization algorithm.

(3) If necessary, a third optimization stage, using
T ∗2 as initial guess and f1 as cost function is
performed with a reduced number of maneu-
vers n̄ (obtained by removing those maneu-
vers identified as ‘zero maneuvers’ in step 2).

Merging Optimal Control with Dynamical
Systems Theory We present some results for
the HOI problem and the MOI problems. A more
indepth study will be given in a forthcoming pub-
lication. In both cases we investigate the effect
of varying times for TCM1min on the optimal
trajectory, for given perturbations in the nomi-
nal launch velocity. The staggered optimization
procedure described above is applied for values
of TCM1min ranging from 1 day to 5 days and
perturbations in the magnitude of the injection
velocity, εv0, ranging from −7 m/s to +7 m/s. We
present typical transfer trajectories, as well as the
dependency of the optimal cost on the two param-
eters of interest. In addition, using the algorithm
presented in Section 2, we perform a sensitivity
analysis of the optimal solution. For the Gene-
sis TCM problem, sensitivty information of first
order is sufficient to characterize the influence of
TCM1min and εv0 on the spacecraft performance.

The merging of optimal control and dynamical
systems has been done through either (1) the
use of the nominal transfer trajectory as a really
accurate initial guess, or (2) the use of the stable
invariant manifold.

Halo Orbit Insertion (HOI) Problem. In this
problem we directly target the selected halo orbit
with the last maneuver taking place at the HOI
point. Using the optimization procedure described
in the previous section, we compute the optimal
cost transfer trajectories for various combinations
of TCM1min and εv0. In all of our computations,
the launch conditions are those corresponding to a
given nominal transfer trajectory with the launch
velocity perturbed as described in Section 2.

As an example, we present complete results for
the case in which the launch velocity is perturbed
by -3 m/s and the first maneuver correction is
delayed by at least 3 days. Initially, we allow
for n = 4 maneuvers. In the first optimization
stage, the second type of cost function has a value
of f∗2 = 1153.998 (m/s)2 after 5 iterations. This
corresponds to f∗1 = 50.9123 m/s. During the



second optimization stage, we monitor the sizes
of all four maneuvers, while minimizing the cost
function (3.2). After 23 iterations, the optimiza-
tion was interrupted at a feasible configuration
when at least one maneuver decreased below a
preset tolerance of 0.1 m/s. The corresponding
cost function is f∗∗1 = 45.1216 m/s with four ma-
neuvers of sizes 33.8252 m/s, 0.0012 m/s, 0.0003
m/s, and 11.2949 m/s. In the last optimization
stage we remove the second and third maneuvers
and again minimize the cost function f1. After 7
optimization iterations an optimal solution with
f∗∗∗1 = 45.0292 m/s is obtained. The two maneu-
vers of the optimal trajectory have sizes of 33.7002
m/s and 11.3289 m/s and take place at 3.0000
and 110.7969 days after launch, respectively. La-
grange multipliers associated with the constraints
of Eqs. (2.3) and (2.8) give the sensitivities of the
optimal solution with respect to launching veloc-
ity perturbation, -10.7341 (m/s)/(m/s), and delay
in first maneuver correction, 4.8231 (m/s)/days.

Launch Errors and Sensitivity Analysis. The
staggered optimization procedure was applied for
all values of TCM1min and εv0 in the region of
interest. In a first experiment, we investigate the
possibility of correcting for errors in the launch
velocity using at most two maneuvers (n = 2).
Numerical values of optimal cost as a function of
these two parameters are given in Table 3. Except
for the cases in which there is no error in the
launch velocity (and for which the final optimal
transfer trajectories have only one maneuver at
HOI), the first correction maneuver is always on
the prescribed lower bound TCM1min. For all
cases investigated, halo orbit insertion takes place
at most 18.6 days earlier or 28.3 days later than
in the nominal case (THOI = 110.2).

εv0 TCM1 (days)
(m/s) 1 2 3 4 5

-7 64.8086 76.0845 88.4296 99.6005 109.9305
-6 54.0461 67.0226 77.7832 86.8630 95.8202
-5 47.1839 57.9451 66.6277 74.4544 81.8284
-4 40.2710 48.8619 55.8274 62.0412 67.9439
-3 33.4476 39.8919 45.0290 49.6804 54.1350
-2 26.6811 30.9617 34.3489 37.3922 40.3945
-1 19.9881 22.2715 23.7848 25.2468 26.6662
0 13.4831 13.3530 13.4606 13.3465 13.2919
1 23.1900 21.9242 23.2003 24.4154 25.5136
2 26.2928 30.2773 33.3203 35.9203 38.3337
3 34.6338 38.8496 43.5486 47.7200 51.6085
4 41.4230 47.5266 53.9557 62.3780 65.1411
5 45.9268 56.2245 64.4292 75.0188 81.4325
6 53.9004 64.9741 76.6978 83.8795 95.2313
7 61.4084 75.9169 85.4875 98.4197 106.0411

Several conclusions can be drawn. First, for all
cases that we investigated, the optimal costs are
well within the ∆V budget allocated for trajectory
correction maneuvers (450 m/s for the Genesis
mission). The cost function is very close to being
linear with respect to both TCM1min time and
launch velocity error. Also, the halo orbit insertion
time is always close enough to that of the nominal
trajectory as not to affect either the collection of
the solar wind or the rest of the mission (mainly

the duration for which the spacecraft evolves
on the halo orbit before initiation of the return
trajectory).

Manifold Orbit Insertion (MOI) Problem.
In the MOI problem the last nonzero maneuver
takes place on the stable manifold and there is
no maneuver to insert onto the halo orbit. A
much larger parameter space is now investigated
(we target an entire surface as opposed to just
a curve) thus making the optimization problem
much more difficult than the one corresponding
to the HOI case. The first problem that arises is
that the nominal transfer trajectory is not a good
enough initial guess to ensure convergence to an
optimal solution. To obtain an appropriate initial
guess we use the following procedure: (1) We start
by selecting an HOI time, THOI . This yields the
position and velocity on the halo orbit. (2) With
the above position and velocity as initial condi-
tions, the equations of motion in Eq. (3.1) are
then integrated backwards in time for a selected
duration TS along the stable manifold. This yields
an MOI point which is now fixed in time, position,
and velocity. (3) For a given value of TCM1min
and with εv0 = 0, and using the nominal transfer
trajectory as initial guess, we use coopt to find
a trajectory that targets this MOI point, while
minimizing f1.

With the resulting trajectory as an initial guess
and the desired value of εv0 we proceed with the
staggered optimization presented before to obtain
the final optimal trajectory for insertion on the
stable manifold. During the three stages of the
optimization procedure, both the MOI point and
the HOI point are free to move (in position, ve-
locity, and time) on the stable manifold surface
and on the halo orbit, respectively. Taking the
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launch time to be TL = 0 and the HOI time
(T ∗HOI) of the nominal transfer trajectory as a
reference point on the halo orbit, we can inves-
tigate a given zone of the design space by an
appropriate choice of the HOI point of our initial
guess trajectory with respect to T ∗HOI (step 1 of
the above procedure). That is, we select a value
T0 such that THOI = T ∗HOI + T0. The point
where the initial guess trajectory inserts onto the
stable manifold is then defined by selecting the
duration TS for which the equations of motion are
integrated backwards in time (step 2 of the above
procedure). This gives a stable manifold insertion



time of TMOI = THOI − TS = T ∗HOI + T0 − TS .
Next, we use coopt to evaluate these various
choices for the initial guess trajectories (step 3 of
the above procedure). A schematic representation
of this procedure is shown in Figure 3.

Regions Best Suited for MOI Insertion. Us-
ing the values of f1(∆V ), we can identify regions
of the stable manifold that are best suited for
MOI insertion. Examples are: (1) (Region A) MOI
trajectories that insert on the halo orbit in the
same region as the nominal transfer trajectory
and which therefore correspond to initial guess
trajectories with small T0; (2) (Region B) MOI
trajectories that have HOI points on the ‘far side’
of the halo orbit and which correspond to initial
guess trajectories with halo insertion time around
T ∗HOI + 1.50 (T0 = 1.50 · 365/2π = 174.27 days).

At first glance, trajectories in Region B might
appear ill-suited to the Genesis mission as they
would drastically decrease the duration for which
the spacecraft evolves on the halo orbit (recall
that design of the return trajectory dictates the
time at which the spacecraft must leave the halo
orbit). But for a typical MOI trajectory, all trajec-
tories on the stable manifold asymptotically wind
onto the halo orbit and are thus very close to the
halo orbit for a significant time. This means that
collection of solar wind samples can start much
earlier than halo orbit insertion, therefore pro-
viding enough time for all scientific experiments
before the spacecraft leaves the halo orbit.

After choosing a region of the stable manifold by
selecting an initial guess trajectory, we perform a
similar analysis as in the HOI problem. Consider
correcting for perturbations in launch velocity by
seeking optimal MOI trajectories in Region B,
that is, on the far side of the halo from the Earth.
For non-zero εv0 and TCM1min, we compute an
MOI initial guess trajectory with T0 = 1.50 and
TS = 0.75 and then use the staggered optimiza-
tion procedure to find an optimal MOI trajectory
in this vicinity.

The results are given in Table 3. Note that the
optimal MOI trajectories are close (in terms of
the cost function f1) to the corresponding HOI
trajectories. Therefore, either method provides an
excellent solution to the TCM problem.

4. CONCLUSIONS AND FUTURE WORK

This paper explored new approaches for autmo-
mated parametric studies of optimal trajectory
correction maneuvers for a halo orbit mission.
Using the halo orbit insertion approach, for all the
launch velocity errors and TCM1min considered
we found optimal recovery trajectories. The cost
functions (fuel consumption in terms of ∆V ) are
within the allocated budget even in the worst case

TCM1min(days) εv0 (m/s) f1 (m/s)

3 -3 45.1427
-4 55.6387
-5 65.9416
-6 76.7144
-7 87.3777

4 -3 49.1817
-4 61.5221
-5 73.4862
-6 85.7667
-7 99.3405

5 -3 53.9072
-4 66.8668
-5 81.1679
-6 94.3630
-7 109.2151

(largest TCM1min and largest launch velocity
error).

Using the stable manifold insertion approach, we
obtained similar results to those found using HOI
targeted trajectories. The failure of the MOI ap-
proach to reduce the ∆V significantly may be
because the optimization procedure (even in the
HOI targeted case) naturally finds trajectories
‘near’ the stable manifold. We will investigate this
interesting effect in future work.

For now, the main contribution of dynamical sys-
tems theory to the optimal control of recovery tra-
jectories is in the construction of good initial guess
trajectories in sensitive regions where optimizers
have the greatest flexibility.
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