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Abstract

This paper applies dynamical systems techniques to the problem of heteroclinic con-
nections and resonance transitions in the planar circular restricted three-body problem.
These related phenomena have been of concern for some time in topics such as the cap-
ture of comets and asteroids and with the design of trajectories for space missions such
as the Genesis Discovery Mission. The main new technical result in this paper is the
numerical demonstration of the existence of a heteroclinic connection between pairs of
periodic orbits, one around the libration point L1 and the other around L2, with the
two periodic orbits having the same energy. This result is applied to the resonance
transition problem and to the explicit numerical construction of interesting orbits with
prescribed itineraries. The point of view developed in this paper is that the invariant
manifold structures associated to L1 and L2 as well as the aforementioned heteroclinic
connection are fundamental tools that can aid in understanding dynamical channels
throughout the solar system as well as transport between the “interior” and “exterior”
Hill’s regions and other resonant phenomena.
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1 Introduction.

1.1 Background and a Brief Overview.

The three-body problem is a classic problem of astrodynamics. Attempts at its solution
laid the foundation for dynamical systems theory and alerted Poincaré to the existence of
chaos within Newtonian mechanics. This paper offers a dynamical system explanation for
the phenomenon of temporary capture and resonant transition of Jupiter comets within
a three-body context. It also explores the possibility of using the transport mechanism
discovered in this study for the design of future space missions. For a general introduction
to the three-body problem, see Holmes [1990] and Simó [1999].

Resonant Transition in Comet Orbits. A number of Jupiter comets such as Oterma
and Gehrels 3 make a rapid transition from heliocentric orbits outside the orbit of Jupiter
to heliocentric orbits inside the orbit of Jupiter and vice versa. During this transition, the
comet is frequently captured temporarily by Jupiter for one to several orbits around Jupiter.
The interior heliocentric orbit is typically close to the 3:2 resonance (three revolutions around
the Sun in two Jupiter periods) while the exterior heliocentric orbit is near the 2:3 resonance
(two revolutions around the Sun in three Jupiter periods).

An important feature of the dynamics of these comets is that during the transition, the
orbit passes close to the libration points L1 and L2. As we recall below, the points L1

and L2 are two of the five equilibrium points for the restricted three-body problem for the
Sun-Jupiter system. Equilibrium points are points at which a particle at rest relative to the
Sun-Jupiter rotating frame remains at rest. Amongst the equilibrium points, the points L1

and L2 are the ones closest to Jupiter, lying on either side of Jupiter along the Sun-Jupiter
line.

The Relevance of Invariant Manifolds. Belbruno and Marsden [1997] attempted to
develop a theoretical understanding of the comet transitions using the “fuzzy boundary”
concept, which they viewed as “a higher-dimensional analogue of L1 and L2.” On the other
hand, Lo and Ross [1997] began the use of dynamical systems theory to explain this same
phenomenon. They used the planar circular restricted three-body problem (PCR3BP) as
the underlying model with which to begin the investigation. They noticed that the orbits
of Oterma and Gehrels 3 (in the Sun-Jupiter rotating frame) follow closely the plots of the
invariant manifolds of L1 and L2, as in Figure 1.1.

Having noticed this, Lo and Ross [1997] suggested that one might use invariant manifold
theory to study these transitional orbits. The present paper builds on the insights of these
works and offers a dynamical system explanation for this phenomenon of temporary capture
and resonance transition of Jupiter comets. A key ingredient in our work is the existence of a
new heteroclinic connection between periodic orbits around L1 and L2 with the same Jacobi
constant (a multiple of the Hamiltonian for the PCR3BP) and the dynamical consequences
of such an orbit.

The Planar Circular Restricted Three-Body Problem. The comets of interest (such
as Oterma and Gehrels 3) are mostly heliocentric, but the perturbations of their motion away
from Keplerian ellipses are dominated by Jupiter’s gravitation. Moreover, their motion is
very nearly in Jupiter’s orbital plane, and Jupiter’s small eccentricity (0.0483) plays little
role during the fast resonance transition (which is less than or equal to one Jupiter period
in duration). The PCR3BP is therefore an adequate starting model for illuminating the
essence of the resonance transition process. However, for a more refined study, especially
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Figure 1.1: (a) Stable (dashed curves) and unstable (solid curves) manifolds of L1 and L2 projected to

position space in the Sun-Jupiter rotating frame. The L1 manifolds are green, while the L2 manifolds are

black. (b) The orbit of comet Oterma (AD 1915–1980) in the Sun-Jupiter barycentered rotating frame (red)

follows closely the invariant manifolds of L1 and L2. Distances are in Astronomical Units (AU).

for the cases where the comets have high inclination and are not dominated solely by Jupiter,
other models are needed. For additional details, see §6.

Framework of the Paper. The point of view developed in this paper is based on the
premise that the invariant manifold structures associated with L1 and L2 periodic orbits
and the heteroclinic connections are fundamental tools that will further the understanding
of the natural transport of material throughout the solar system.

In tackling this problem, we have drawn upon some work of the Barcelona group on the
PCR3BP, in particular, Llibre, Martinez and Simó [1985], hereafter denoted LMS. We have
also drawn heavily on works of Moser, Conley and McGehee on the same subject. Specific
citations are given later.

1.2 Heteroclinic Connections and their Consequences.

Heteroclinic Connection. One of the main new technical results of this paper is the
numerical demonstration of a heteroclinic connection between a pair of periodic orbits,
one around the libration point L1 and the other around L2. This heteroclinic connection
augments the homoclinic orbits associated with the L1 and L2 periodic orbits, which were
previously known to exist. By linking these heteroclinic connections and homoclinic orbits,
we have found the dynamical chains which form the backbone for temporary capture and
rapid resonance transition of Jupiter comets. See Figure 1.2.

Existence of Transition Orbits. We have proved the existence of a large class of in-
teresting orbits near a chain which a comet can follow in its rapid transition between the
inside and outside of Jupiter’s orbit via a Jupiter encounter. The collection of these orbits
is called a dynamical channel. We also use this term when collections of such chains
for separate three body systems, roughly speaking, overlap and are put end to end. We
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Figure 1.2: A dynamical channel (homoclinic-heteroclinic chain) corresponding to the Jupiter comet

Oterma. The periodic orbits about L1 and L2 are black. Their homoclinic orbits are blue and green. The

heteroclinic connection between them is magenta. The actual orbit of Oterma (AD 1910–1980) is shown in

red overlaying the chain. Distances are in Astronomical Units (AU).

can individually label the orbits in a chain with an itinerary giving their past and future
whereabouts, making their classification and manipulation possible.

Numerical Construction of Orbits. We not only prove the existence of orbits with
prescribed itineraries, but develop a systematic procedure for their numerical construction.
This is an important part of the program; it turns a general existence theory into a practical
technique for constructing orbits.

Applications to Space Mission Design. The systematic procedures developed here
could be used to design spacecraft orbits which explore a large region of space in the vicin-
ity of the Earth (and near Earth’s orbit) using low-fuel controls. Behavior related to the
dynamical channels has already been observed in the trajectory for NASA’s Genesis Discov-
ery Mission, which exhibits near-heteroclinic motion between L1 and L2 in the Sun-Earth
system (Lo, Williams, et al. [1998]). Having a better understanding of the underlying
homoclinic-heteroclinic structures should allow us to construct and control spacecraft tra-
jectories with desired characteristics (e.g., transfer between L1 and L2 orbits, explore the
region interior to Earth’s orbit and then return to Earth’s vicinity).

To give a specific illustration, these techniques can be used to construct a “Petit Grand
Tour” of the moons of Jupiter. We can design an orbit which follows a prescribed itinerary
in its visit to the many moons (e.g., one orbit around Ganymede, four around Europa, etc.).
See Figure 1.3, where we show a preliminary example.

1.3 A Few Key Features of the Three Body Problem.

The Planar Circular Restricted Three-Body Problem. The equations of motion
for the PCR3BP will be recalled below, but here we recall a few key features. Two of the
bodies, which we call generically the Sun and Jupiter, have a total mass that is normalized
to one. Their masses are denoted, as usual, by mS = 1 − µ and mJ = µ respectively (see
Figure 1.4). These bodies rotate in the plane counterclockwise about their common center
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Figure 1.3: The “Petit Grand Tour” space mission concept for the Jovian moons. In our example, we

show an orbit coming into the Jupiter system and (a) performing one loop around Ganymede (shown in

the Jupiter-Ganymede rotating frame), (b) transferring from Ganymede to Europa using a single impulsive

maneuver (shown in the Jupiter-centered inertial frame), and (c) getting captured by Europa (shown in the

Jupiter-Europa rotating frame).

of mass and with the angular velocity normalized to one. The third body, which we call the
comet or the spacecraft , has mass zero and is free to move in the plane.

Choose a rotating coordinate system so that the origin is at the center of mass and the
Sun (S) and Jupiter (J) are fixed at (−µ, 0) and (1−µ, 0) respectively. Then the equations
of motion of the comet are an autonomous Hamiltonian system of differential equations
with two degrees of freedom. The system has a first integral called the Jacobi integral
(also called the Jacobi constant), which is a multiple of the Hamiltonian. Following the
conventions of the literature, we shall take

Jacobi Constant = −2 × Hamiltonian.

Equilibrium Points and Hill’s Regions. The system has three unstable collinear equi-
librium points on the Sun-Jupiter line, called L1, L2 and L3, whose eigenvalues include one
real and one imaginary pair. The level surfaces of the Jacobi constant (which are also energy
surfaces) are invariant three-dimensional manifolds. Our main concern here is the behavior
of the orbits whose Jacobi constant is just below that of L2. Recall that the Hill’s region is
the projection of this region defined by the Jacobi integral onto position space. For this case,
the Hill’s region contains a “neck” about L1 and L2, as shown in Figure 1.5(a). Thus, orbits
with a Jacobi constant just below that of L2 are energetically permitted to make a transit
through the neck region from the interior region (inside Jupiter’s orbit) to the exterior
region (outside Jupiter’s orbit) passing through the Jupiter region. Part of the method-
ology we develop is usefully described in terms of an analogy used in Conley [1969]. While
this analogy cannot replace the detailed study of the orbit structure of the PCR3BP, it does
provide a helpful mental picture. Consider three bowls connected by two troughs so that,
when inverted, they look like three mountains with two passes between them. The three
bowls correspond to the interior, Jupiter, and exterior regions. The troughs correspond to
the L1 and L2 equilibrium regions.

The equations of motion of the PCR3BP can be viewed as those describing the motion
of a point mass sliding without friction on this “triple bowl.” Since the kinetic energy is
positive, fixing the value of the Hamiltonian function corresponds to limiting the height to
which the mass can go. Our problem corresponds to the case where the mass can go high
enough to get from one bowl to the other two with just a little room to spare in the trough.
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Figure 1.4: Equilibrium points of the planar circular restricted three-body problem as viewed, not in any

inertial frame, but in the rotating frame, where the Sun and Jupiter are at fixed positions along the x-axis.

The Flow near the Lagrange Points L1 and L2. Having fixed on an appropriate
energy level surface, we first study the behavior of orbits near the equilibrium points (see
Figure 1.5) which, in the example above, correspond to the saddle points in the troughs
connecting the bowls. In §2, we collect the major results on the flow near the equilibrium
points L1 and L2 from Conley [1968, 1969] and McGehee [1969], both to set notation and
for the convenience of the reader. This local study is performed using the linearized system
of the PCR3BP. With the aid of a theorem of Moser, all the qualitative results of this
linearized system carry over to the full nonlinear equations.

Pieces of stable and unstable manifolds of periodic orbits about L1 and L2, made up
of asymptotic orbits, separate two types of motion: transit orbits and non-transit orbits.
These manifolds play a gate-keeping role for resonance transition. Orbits inside the tubes of
these manifolds transit from one region to another. Those outside the tubes bounce back.
This observation will be used later in the numerical construction of orbits in §4.

1.4 Outline of the Paper and Summary of the Results.

Transit Orbits. The main result of §2 is that besides the existence of an unstable peri-
odic solution called a Lyapunov orbit near each equilibrium point, there are also transit,
asymptotic and non-transit solutions. The latter orbits are defined according to whether
they make a transit from one region to the other, wind to or from the periodic solution,
or come out of one region and pass near the critical point only to fall back into the same
region. See Figure 1.5(b).

Homoclinic Orbits and Heteroclinic Connections. In §3 and §4, we make use of
the local classification of orbits from §2 to define global classes of orbits in terms of their
ultimate behavior with respect to the equilibrium points. As dynamical systems theory
suggests, to understand the global dynamics of the flow, one should examine structures
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such as homoclinic orbits and heteroclinic connections (see, for example, Moser [1973]).
In this vein, we recall in §3 some results in McGehee [1969], which proved the existence

of homoclinic orbits in both the interior and exterior regions, which are doubly asymptotic
to L1 and L2 Lyapunov orbits, respectively.

Then we use semi-analytical methods to show the existence of heteroclinic connections in
the Jupiter region which asymptotically connect the L1 and L2 Lyapunov orbits. Moreover,
we also show that with appropriate Jacobi constants, there exist chains of transversal ho-
moclinic and heteroclinic orbits (see Figure 1.2). These chains will be used in §4 to organize
the distinctively different types of global motions. We use a semi-analytical method by com-
bining symbolic and numerical techniques, which is guided by careful analytical, geometrical
and dynamical aspects of the problem.

Global Orbit Structure of the PCR3BP. In §4, we use the chains of homoclinic and
heteroclinic orbits to construct a suitable Poincaré map in the neighborhood of the chain
which allows us to classify as well as organize distinctively different types of global motions
of the PCR3BP in terms of ultimate behavior with respect to the equilibrium points. We
prove a theorem which gives the global orbit structure in the neighborhood of a chain. In
simplified form, the theorem essentially says:

For any admissible bi-infinite sequence (. . . , u−1;u0, u1, u2, . . . ) of symbols {S, J,X}
where S, J , and X stand for the interior (Sun), Jupiter, and exterior regions respectively,
there corresponds an orbit near the chain whose past and future whereabouts with respect to
these three regions match those of the given sequence.

For example, given the bi-infinite sequence, or itinerary, (. . . , S;J,X, J, . . . ), there exists
an orbit starting in the Jupiter region which came from the interior region and is going to
the exterior region and returning to the Jupiter region.

We can then classify the orbits which correspond to qualitatively different varieties of
global motions. For example, “oscillating” orbits are (roughly) those which cross from one

8



region to the others infinitely many times; “capture” orbits are those which cross for some
amount of time but eventually stay in one region; and asymptotic orbits are those which
eventually wind onto the periodic solution. Orbits which exhibit none of these behaviors
stay in one region for all time and are called non-transit.

We not only prove the existence of orbits with prescribed itineraries, but develop a
systematic procedure for their numerical construction. By following successive intersections
of stable and unstable invariant manifolds of L1 and L2 Lyapunov orbits with a Poincaré
section, we can generate regions of orbits with itineraries of arbitrary length.

Resonance Transition. In §5, we focus on a limited case of the fast dynamical chan-
nel transport mechanism developed in previous sections; the case of transition between
resonances. In particular, we study how the invariant manifolds and their heteroclinic in-
tersections connect the mean motion resonances of the interior and exterior regions (e.g.,
the 3:2 and 2:3 Jupiter resonances) via the Jupiter region.

By numerical exploration of the heteroclinic connection between the interior and exterior
resonances, we obtain a better picture of the resonance transition of actual Jupiter comets.
As our example, we explain the sense in which Jupiter comet Oterma transitions between the
3:2 and 2:3 resonances. We discover much about the mixed phase space structure, especially
the mean motion resonance structure, of the PCR3BP.

Conclusion and Future Work. In the conclusion, we make several additional remarks
as well as point out some possible directions for future work, such as extensions to three
dimensions, many body problems, merging with optimal control, and the transport and
distribution of asteroids, comets and Kuiper-belt objects in the solar system.

2 The Flow near the Libration Points L1 and L2.

In this section we study the behavior of orbits near the two libration points1 L1 and L2 and
particularly those orbits whose Jacobi constant C is just below that of the critical point
L2, that is, C < C2. The Hill’s region corresponding to such values of the Jacobi constant
contains a “neck” about each libration point; thus, in the case of the Lagrange point L1

between the two primary masses S and J , orbits on the integral surface can make a transit
(through the neck) from the vicinity of one mass point to the other. The aim here is to
describe how orbits in the “neck” look. A similar study can be done for the other libration
point L2. Correspondingly, in this section, we shall use L to denote either L1 or L2. We
will also adopt the convention of using script letters to refer to regions on the energy surface
and italicized letters for that same region’s projection onto position space. For instance, the
equilibrium region R on the energy surface (the “neck” for either L1 or L2) has the position
space projection R.

To obtain a good idea of the orbit structure in the “neck” region R, it is sufficient to
discuss the equations of motion linearized near the critical point. Indeed, by virtue of Moser’s
generalization of a theorem of Lyapunov all the qualitative results of such a discussion carry
over to the full nonlinear equations.

2.1 The Planar Circular Restricted Three-Body Problem.

We begin by recalling the equations for the planar circular restricted three-body problem
(PCR3BP). See, for example, Abraham and Marsden [1978] or Meyer and Hall [1992] for

1These points were discovered by Euler before Lagrange discovered the Lagrange points, L4 and L5, but
it is common to call L1 and L2 the Lagrange points despite being historically inaccurate.
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more information. As mentioned previously, the two main bodies are called generically the
Sun and Jupiter, and have masses denoted mS = 1 − µ and mJ = µ. They rotate in
the plane in circles counterclockwise about their common center of mass and with angular
velocity normalized as one. The third body, which we call the comet or the spacecraft, has
mass zero and is free to move in the plane. Choose a rotating coordinate system so that the
origin is at the center of mass and the Sun and Jupiter are fixed on the x-axis at (−µ, 0)
and (1 − µ, 0) respectively (see Figure 1.4). Let (x, y) be the position of the comet in the
plane (so these are the position coordinates relative to the positions of the Sun and Jupiter,
not relative to an inertial frame).

Methods of Derivation. There are several ways to derive and model the Hamiltonian
structure for this system, as discussed at length in the above references. For example, as
in Whittaker’s book, Abraham and Marsden [1978] use time dependent canonical transfor-
mation theory to transform the problem from an inertial frame to a rotating frame. This
reference also discusses the Delaunay and the Poincaré models. A simpler technique is to use
covariance of the Lagrangian formulation and use the Lagrangian directly in a moving frame
(see Marsden and Ratiu [1999]). This method directly gives the equations in Lagrangian
form and the associated Hamiltonian form is given by the Legendre transformation.

The Planar Circular Restricted Three-Body Problem Model (PCR3BP). After
going through the aforementioned procedure, one finds that the new Hamiltonian function
is given by

H =
(px + y)2 + (py − x)2

2
− x2 + y2

2
− 1− µ

r1
− µ

r2
− µ(1− µ)

2
, (2.1)

where

r1 =
√

(x + µ)2 + y2 and r2 =
√

(x− 1 + µ)2 + y2.

The relationship between the momenta and the velocities are a result of either the Legendre
transformation (if one is taking a Lagrangian view) or of Hamilton’s equations:

ẋ =
∂H

∂px
= px + y; ẏ =

∂H

∂py
= py − x. (2.2)

The remaining dynamical equations are

ṗx = −∂H

∂x
= py − x + Ωx; ṗy = −∂H

∂y
= −px − y + Ωy, (2.3)

where

Ω =
x2 + y2

2
+

1− µ

r1
+

µ

r2
+

µ(1− µ)
2

,

and where Ωx,Ωy are the partial derivatives of Ω with respect to the variables x, y.
On the Lagrangian side we write the equations in terms of the velocities; that is, we

make the transformation: ẋ = px + y, ẏ = py − x, where ẋ, ẏ correspond to the velocity in
the rotating coordinate system. Then the equations can be rewritten in second order form
as

ẍ− 2ẏ = Ωx, ÿ + 2ẋ = Ωy. (2.4)

10



This form of the equations of motion has been studied in detail in Szebehely [1967] and may
be more familiar to the astronomy and astrodynamics communities. Equations (2.4) are
called the equations of the planar circular restricted three-body problem (PCR3BP). They
have a first integral called the Jacobi integral, which is given by

C(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2) + 2Ω(x, y) = −2E(x, y, ẋ, ẏ). (2.5)

We shall use E when we regard the Hamiltonian (which is not the kinetic plus potential
energy) as a function of the positions and velocities and H when we regard it as a function
of the positions and momenta.

Equilibrium Points. The system (2.4) has five equilibrium points, three collinear ones on
the x-axis, called L1, L2, L3 and two equilateral points called L4, L5 (see Figure 1.4). These
equilibrium points are critical points of the (effective potential) function Ω. The value of
the Jacobi integral at the point Li will be denoted by Ci.

2.2 Linearization near the Collinear Equilibria.

Studying the linearization of the dynamics near the equilibria is of course an essential
ingredient for understanding the more complete nonlinear dynamics.

To find the linearized equations around the collinear Lagrange point L with coordinates
(k, 0), we need the quadratic terms of the Hamiltonian H in equation (2.1) as expanded
about (k, 0). After making a coordinate change with (k, 0) as the origin, these quadratic
terms form the Hamiltonian function for the linearized equations, which we shall call Hl

Hl =
1
2
{(px + y)2 + (py − x)2 − ax2 + by2}, (2.6)

where, a and b are defined by a = 2ρ + 1, and b = ρ− 1 and where

ρ = µ|k − 1 + µ|−3 + (1− µ)|k + µ|−3.

A short computation gives the linearized equations in the form

ẋ =
∂Hl

∂px
= px + y, ṗx = −∂Hl

∂x
= py − x + ax,

ẏ =
∂Hl

∂py
= py − x, ṗy = −∂Hl

∂y
= −px − y − by, (2.7)

To make the computations easier and to give the variables simpler geometric meaning,
let us introduce the transformation: vx = px + y, vy = py − x, where vx, vy correspond to
velocity in the rotating coordinate system. The transformed equations are then given by

ẋ = vx, v̇x = 2vy + ax,

ẏ = vy, v̇y = −2vx − by, (2.8)

which is the linearization of the equations (2.4) around the equilibrium point.
The integral Hl of (2.6) now appears as

El =
1
2
(v2

x + v2
y − ax2 + by2), (2.9)

which corresponds to the energy integral (E of (2.5)) of the restricted problem. Notice that
the zero-surface of the integral El corresponds to the Jacobi integral surface which passes
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through the libration point. We shall therefore study solutions of equations (2.8) on the
surface El = E > 0 which corresponds to the case where the Hill’s region contains a neck
about the libration point.

We remark that this derivation is good for any of the three collinear libration points,
though the value of ρ will not be the same for each point. With a mass ratio like that of
Jupiter to the Sun, where µ = 0.0009537, the values of a and b are approximately

a = 9.892, b = 3.446 for L1 and a = 8.246, b = 2.623 for L2,

respectively.

2.3 The Geometry of Solutions near the Libration Point.

Now we analyze the linearized equations (2.8). It is straightforward to find that the eigen-
values of this linear system have the form ±λ and ±iν, where λ and ν are positive constants.
The corresponding eigenvectors are

u1 = (1,−σ, λ,−λσ),
u2 = (1, σ,−λ,−λσ),
w1 = (1,−iτ, iν, ντ),
w2 = (1, iτ,−iν, ντ),

where σ and τ are constants. To better understand the orbit structure on the phase space,
we make a linear change of coordinates with the eigenvectors, u1, u2, w1, w2, as the axes
of the new system. Using the corresponding new coordinates ξ, η, ζ1, ζ2, the differential
equations assume the simple form

ξ̇ = λξ, ζ̇1 = νζ2,

η̇ = −λη, ζ̇2 = −νζ1, (2.10)

and the energy function (2.9) becomes

El = λξη +
ν

2
(ζ2

1 + ζ2
2 ). (2.11)

Solutions of the equations (2.10) can be conveniently written as

ξ(t) = ξ0eλt, η(t) = η0e−λt,

ζ(t) = ζ1(t) + iζ2(t) = ζ0e−iνt, (2.12)

where the constants ξ0, η0 and ζ0 = ζ0
1 + iζ0

2 are the initial conditions. These linearized
equations admit integrals in addition to the energy function (2.11); namely, the functions
ηξ and |ζ|2 = ζ2

1 + ζ2
2 are both constant along solutions.

The Phase Space. For positive E and c, the region R, which is determined by

El = E , and |η − ξ| ≤ c, (2.13)

is homeomorphic to the product of a two-sphere and an interval; namely, for each fixed value
of η − ξ between −c and c, we see that the equation El = E determines the two-sphere

λ

4
(η + ξ)2 +

ν

2
(ζ2

1 + ζ2
2 ) = E +

λ

4
(η − ξ)2.

The bounding sphere of R for which η− ξ = −c will be called n1, and that where η− ξ = c,
n2 (see Figure 2.1). We shall call the set of points on each bounding sphere where η+ ξ = 0
the equator, and the sets where η + ξ > 0 or η + ξ < 0 will be called the north and south
hemispheres, respectively.
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The Flow in R. To analyze the flow in R one simply considers the projections on the
(η, ξ)-plane and ζ-plane, respectively. In the first case we see the standard picture of an
unstable critical point, and in the second, of a center. Figure 2.1 schematically illustrates the
flow in the (η, ξ)-plane. The coordinate axes have been tilted by 45◦ in order to correspond
to the direction of the flow in later figures. With regard to the first projection we see that
R itself projects to a set bounded on two sides by the hyperbola ηξ = E/λ (corresponding
to |ζ|2 = 0, see (2.11)) and on two other sides by the line segments η − ξ = ±c, which
correspond to the bounding spheres.

Since ηξ is an integral of the equations in R, the projections of orbits in the (η, ξ)-plane
move on the branches of the corresponding hyperbolas ηξ = constant, except in the case
ηξ = 0 (where η = 0 or ξ = 0). If ηξ > 0, the branches connect the bounding line segments
η − ξ = ±c and if ηξ < 0, they have both end points on the same segment. A check of
equation (2.12) shows that the orbits move as indicated by the arrows in Figure 2.1.

η−
ξ=

−c

η−
ξ=

+c

η−
ξ=

0

η+ξ=0

|ζ|
2=0

ξ η

|ζ|
2 =ρ

∗ |ζ| 2=ρ∗|ζ|
2=0

n1 n2

Figure 2.1: The projection onto the (η, ξ)-plane of orbits near the equilibrium point (note, axes tilted

45◦). Shown are the periodic orbit (black dot at the center), the asymptotic orbits (green), two transit

orbits (red) and two non-transit orbits (blue).

To interpret Figure 2.1 as a flow inR, notice that each point in the projection corresponds
to a circle in R given by the “radius” variable ρ = |ζ|2 = constant. Recall from (2.11) that
|ζ|2 = 2

ν (E − ληξ). Of course, for points on the bounding hyperbolic segments (ηξ = E/λ),
the constant is zero so that the circle collapses to a point. Thus, the segments of the lines
η − ξ = ±c in the projection correspond to the two-spheres bounding R. This is because
each corresponds to a circle crossed with an interval where the two end circles are pinched
to a point.

We distinguish nine classes of orbits grouped into the following four categories:

1. The point ξ = η = 0 corresponds to a periodic orbit in R (the Lyapunov orbit). See
black dot at center of Figure 2.1.

2. The four half open segments on the axes, ηξ = 0 (or equivalently |ζ|2 = ρ∗ where
ρ∗ = 2E/ν), correspond to four cylinders of orbits asymptotic to this periodic solution
either as time increases (ξ = 0) or as time decreases (η = 0). These are called
asymptotic orbits. See the four green orbits of Figure 2.1.
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3. The hyperbolic segments determined by ηξ = constant > 0 (or equivalently |ζ|2 < ρ∗)
correspond to two cylinders which cross R from one bounding sphere to the other,
meeting both in the same hemisphere; the north one if they go from η − ξ = +c to
η− ξ = −c, the south one in the other case. Since these orbits transit from one region
to another, we call them transit orbits. See the two red orbits of Figure 2.1.

4. Finally the hyperbolic segments determined by ηξ = constant < 0 (|ζ|2 > ρ∗) cor-
respond to two cylinders of orbits in R each of which runs from one hemisphere to
the other hemisphere on the same bounding sphere. Thus if ξ > 0, the sphere is n1

(η − ξ = −c) and orbits run from the south (η + ξ < 0) to the north (η + ξ > 0)
hemisphere while the converse holds if ξ < 0, where the sphere is n2. Since these
orbits return to the same region, we call them non-transit orbits. See the two blue
orbits of Figure 2.1.

McGehee Representation. McGehee [1969], building on the work of Conley [1968],
proposed a representation which makes it easier to visualize the region R. Recall that R
is homeomorphic to S2 × I. In McGehee [1969] it is represented by a spherical annulus, as
shown in Figure 2.2(b).
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a2
+
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+

a1
+

a2
−

b1 b2
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+
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−
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n1

n2

a1
−

a2
+
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−
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−
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r1
−

r1
+

r2
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−

(a) (b)

ω
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Figure 2.2: (a) The cross-section of the flow in the R region of the energy surface. (b) The McGehee

representation of the flow in the region R.

Figure 2.2(a) is a cross-section of R. Notice that this cross-section is qualitatively the
same as the illustration in Figure 2.1. The full picture (Figure 2.2(b)) is obtained by
rotating this cross-section, about the indicated axis ω. The following classifications of orbits
correspond to the previous four categories:

1. There is an unstable periodic orbit l in the region R corresponding to the point q.

14



2. Again let n1, n2 be the bounding spheres of region R, and let n denote either n1 or n2.
We can divide n into two hemispheres: n+, where the flow enters R, and n−, where
the flow leaves R. We let a+ and a− (where |ζ|2 = ρ∗) be the intersections with n of
the cylinders of orbits asymptotic to the unstable periodic orbit l. Then a+ appears
as a circle in n+, and a− appears as a circle in n−.

3. If we let d+ be the spherical cap (where |ζ|2 < ρ∗) in n+ bounded by a+, then the
transit orbits entering R on d+ exit on d− of the other bounding sphere. Similarly,
letting d− (|ζ|2 < ρ∗) be the spherical cap in n− bounded by a−, the transit orbits
leaving on d− have come from d+ on the other bounding sphere.

4. Note that the intersection b of n+ and n− is a circle of tangency points. Orbits tangent
at this circle “bounce off,” i.e., do not enter R locally. Moreover, if we let r+ be a
spherical zone which is bounded by a+ and b, then non-transit orbits entering R on
r+ (where |ζ|2 > ρ∗) exit on the same bounding sphere through r− (where |ζ|2 > ρ∗)
which is bounded by a− and b.

The key observation here is that the asymptotic orbits are pieces of the stable and
unstable manifold “tubes” of the Lyapunov orbit and they separate two distinct types of
motion: transit orbits and non-transit orbits. The transit orbits, passing from one region
to another, are those inside the cylindrical manifold tube. The non-transit orbits, which
bounce back to their region of origin, are those outside the tube. This observation will be
important for the numerical construction of interesting orbits in §4.

2.4 The Flow Mappings in the Equilibrium Region of the Energy
Surface.

We now observe that on the two bounding spheres, each of the hemispheres n± is transverse
to the flow. It follows that the flow in R defines four mappings — two between pairs of
spherical caps d± and two between pairs of spherical zones r±:

ψ1 : d+
1 → d−2 , ψ2 : d+

2 → d−1 , (2.14)
ψ3 : r+

1 → r−1 , ψ4 : r+
2 → r−2 . (2.15)

The four mappings are diffeomorphisms. Furthermore, all these mappings preserve the
“radius” variable ρ = |ζ|2 since this is an integral in R.

The Infinite Twisting of the Mappings. After computing from the solution (2.12)
that

d

dt
arg ζ = −ν, (2.16)

we see that the change in the argument of ζ for each of these mappings ψi is approximately
proportional to the negative of the time required to go from domain to range. Also, this
time approaches infinity as the flow approaches the circle a+ (|ζ|2 → ρ∗), since on the circle
a+ (where |ζ|2 = ρ∗) the orbits are asymptotic to the unstable periodic solution l.

These facts imply that arbitrary circles with radius variable ρ = |ζ|2 in the domain of
the mappings are rotated by an amount that decreases to minus infinity as ρ→ ρ∗. Hence,
the behavior of the flow in R should be obtained by adding some spiraling to the arrows
given in Figure 2.2(b).

In §4, we shall need a simple geometric consequence of the above observation on spiraling
stated in terms of “abutting arcs” in the domain, or range of ψi. Namely, an arc lying in
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Figure 2.3: Spiraling of the images of arcs γi.

the closure of one of these sets (d± and r±) is called an abutting arc if it is in the set itself
except for one end point in the circle a±. See Figure 2.3. For example, let γ1 be an abutting
arc in the domain d+

1 of ψ1 with one end point P1 in a+
1 . Let δ1 be another abutting arc

in the range d−2 of ψ1 such that one of its end point Q1 is in a−2 . Then ψ1(γ1) is an arc
spiraling towards a−2 and cutting δ1 an infinite number of times in any neighborhood of the
point of abutment Q1.

This follows directly from the infinite twisting of the mappings ψ1; namely the image of
γ1 spirals infinitely many times around and down to a−2 in the range.

Similarly, let γi be an abutting arc in the domain of ψi with one end point Pi in a+
2 , a+

1 , a+
2

for i = 2, 3, 4, respectively. Let δi be another abutting arc in the range of ψi such that one
of its end points Qi is in a−1 , a−1 , a−2 respectively. Then ψi(γi) is an arc spiraling towards
a−1 , a−1 , a−2 , respectively and cutting δi an infinite number of times in any neighborhood of
the point of abutment Qi.

2.5 Orbits in the Equilibrium Region of Position Space.

After studying the orbit structure in the equilibrium region R and its projection on the
(η, ξ)-plane, we now examine briefly the appearance of orbits in position space, that is, in
the (x, y)-plane.

Recall from §2.3 that the ξ and η coordinate axes are the eigenvectors u1 = (1,−σ, λ,−λσ)
and u2 = (1, σ,−λ,−λσ), respectively. Their projection on the (x, y)-plane, ū1 = (1,−σ)
and ū2 = (1, σ), plays an important role in the study of the appearance of orbits on the
position space.

The image of a tilted projection ofR on the (x, y)-plane provides the right mental picture.
To build physical intuition regarding the flow in the equilibrium region, it is important to
study the projection of the different classes of orbits on the (x, y)-plane. Here, we summarize
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the main results of Conley [1968].
Recall from §2.3 that the eigenvalues of the linear system (2.8) are ±λ and ±iν with

corresponding eigenvectors u1, u2, w1, w2. Thus, the general (real) solution has the form

v(t) = (x(t), y(t), ẋ(t), ẏ(t)) = α1e
λtu1 + α2e

−λtu2 + 2Re(βeiνtw1), (2.17)

where α1, α2 are real and β = β1 + iβ2 is complex. Notice that (2.17), while slightly more
complicated, is essentially the same as (2.12).

Upon inspecting this general solution, we see that the solutions on the energy surface
fall into different classes depending upon the limiting behavior of x(t) (the x coordinate of
v(t)) as t tends to plus or minus infinity. Notice that

x(t) = α1e
λt + α2e

−λt + 2(β1cos νt− β2sin νt). (2.18)

Thus, if t→ +∞, then x(t) is dominated by its α1 term. Hence, x(t) tends to minus infinity
(staying on the left-hand side), is bounded (staying around the equilibrium point), or tends
to plus infinity (staying on the right-hand side) according to α1 < 0, α1 = 0, α1 > 0. See
Figure 2.4. The same statement holds if t→ −∞ and α2 replaces α1. Different combinations
of the signs of α1 and α2 will give us again the same nine classes of orbits which can be
grouped into the same four categories:

1. If α1 = α2 = 0, we obtain a periodic solution which is a Lyapunov orbit. It has been
proven in Conley [1968] that this periodic orbit projects onto the (x, y)-plane as an
ellipse with major axis of length 2τ

√
E/κ in the direction of the y-axis, and minor

axis of length 2
√
E/κ in the direction of the x-axis. The orientation of the orbit is

clockwise. Here κ (= −a + bτ2 + ν2 + ν2τ2) is a constant. See Figure 2.4. Note that
the size of the ellipse goes to zero with E .

2. Orbits with α1α2 = 0 are asymptotic orbits. They are asymptotic to the periodic
Lyapunov orbit. It has been proven in Conley [1968] that the asymptotic orbits with
α1 = 0 project into the strip S1 in the xy-plane centering around ū2 and bounded by
the lines

y = σx± 2
√
E(σ2 + τ2)/κ. (2.19)

Similarly, asymptotic orbits with α2 = 0 project into the strip S2 centering around ū1

and bounded by the lines

y = −σx± 2
√
E(σ2 + τ2)/κ. (2.20)

Notice that the width of the strips goes to zero with E .

3. Orbits with α1α2 < 0 are transit orbits because they cross the equilibrium region R
from −∞ (the left-hand side) to +∞ (the right-hand side) or vice versa.

4. Orbits with α1α2 > 0 are non-transit orbits.

To study the projection of these last two categories of orbits, Conley [1968] proved a
couple of propositions which allows one to determine at each point (x, y) the “wedge” of
velocities (if any) in which α1α2 < 0. See the shaded wedges in Figure 2.4. Since a detailed
study will draw us too far afield, we simply state some of the main observations.

In Figure 2.4, S1 and S2 are the two strips mentioned above. Outside of each strip
Si, i = 1, 2, the sign of αi is independent of the direction of the velocity. These signs can
be determined in each of the components of the equilibrium region R complementary to
both strips. For example, in the left-most central components, both α’s are negative, while
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Figure 2.4: The flow in the equilibrium region R of position space. Shown are the periodic orbit (black

ellipse), a typical asymptotic orbit (green), two transit orbits (red), and two non-transit orbits (blue).

in the right-most central components both α’s are positive. Therefore, α1α2 > 0 in both
components and only non-transit orbits project onto these two components.

Inside the strips the situation is more complicated since in Si, i = 1, 2, the signs of αi

depends on the direction of the velocity. For simplicity we have indicated this dependence
only on the two vertical bounding line segments in Figure 2.4. For example, consider the
intersection of strip S1 with the left-most vertical line. On the subsegment so obtained
there is at each point a wedge of velocity in which α1 is positive. The sign of α2 is always
negative on this subsegment, so that orbits with velocity interior to the wedge are transit
orbits (α1α2 < 0). Of course, orbits with velocity on the boundary of the wedge are
asymptotic (α1α2 = 0), while orbits with velocity outside of the wedge are non-transit.
Here, only a transit and asymptotic orbit are illustrated. The situation on the remaining
three subsegments is similar.

The Flow in the Equilibrium Region. In summary, the phase space in the equilibrium
region can be partitioned into four categories of distinctly different kinds of motion (see
Figures 1.5 and 2.4): the periodic Lyapunov orbits, asymptotic orbits, transit orbits, and,
finally, non-transit orbits.

3 Existence of Homoclinic Orbits and Heteroclinic Con-
nections.

As mentioned earlier, near the equilibrium point L (i.e., L1 or L2), there exists a family
of unstable periodic orbits called Lyapunov orbits. For appropriate values of the Jacobi
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constant, the energy surface contains exactly one of these periodic solutions around each
Lagrange point. As dynamical systems theory suggests (see, for example, Wiggins [1990]),
to understand fully the global dynamics of the flow, one should examine structures like
homoclinic orbits and heteroclinic connections to these L1 and L2 Lyapunov orbits.

The local structure of orbits near the libration points gives periodic orbits (the Lyapunov
orbits), pieces of the stable and unstable manifolds of these periodic orbits and transit and
non-transit orbits. In this section, we explore how these local structures are connected
globally. Our goal is to show how homoclinic orbits in the interior region are connected to
the homoclinic orbits in the exterior region by a heteroclinic cycle in the Jupiter region.
The union of these three structures is called a chain.

The story is completed only in §4 when this dynamical chain structure is used to show
the existence of complex and interesting trajectories, some of which have been observed in
actual comet trajectories.

In more detail, this section discusses the following topics.

1. In §3.1 and §3.2, we shall first discuss some of the results in Conley [1968] and McGehee
[1969], which have proven the existence of homoclinic orbits in both the interior and
exterior regions. These are the orbits which are both forward and backward asymptotic
to the unstable Lyapunov orbit. The heart of the proof is the construction of a function
which counts the number of times an orbit segment with endpoints near the Lyapunov
orbit winds around a solid torus.

2. We shall discuss in §3.3 the main results in LMS [1985] on the transversality of the
invariant manifolds for the L1 Lyapunov orbit. In dynamical systems theory, the
property of being doubly asymptotic to a periodic orbit is described (and more quan-
titatively handled) by saying that the orbit is in both the stable and unstable manifold
of the periodic orbit, or that the homoclinic orbit is in the intersection of the stable
and unstable manifolds of the periodic orbit. One of the most important issues which
arises in this context is the transversality of the intersection. The presence of transver-
sality will allow us to draw many profound conclusions about the orbit structure of
the system under study. Since neither Conley [1968] nor McGehee [1969] was able to
settle this issue, LMS [1985] spent their major effort in proving analytically that the
intersection is indeed transversal under appropriate conditions, at least in the interior
region. We shall summarize their results.

However, it should be clear from the start that both Theorem 3.3 and 3.4 have been
cited only for guidance on how to construct the transversal homoclinic orbits numer-
ically. In §3.4 we shall use the semi-analytical methods developed by the Barcelona
group in Gómez, Jorba, Masdemont and Simó [1993] to show numerically the existence
of transversal homoclinic orbits in both the interior and exterior regions.

3. In §3.5 we shall use similar semi-analytical methods to show numerically the existence
of transversal heteroclinic connections in the Jupiter region which connect asymptot-
ically the L1 and L2 Lyapunov orbits. A heteroclinic orbit is an orbit lying in the
intersection of the stable manifold of one periodic orbit and the unstable manifold of
another periodic orbit. Since the PCR3BP is a Hamiltonian system with two degree
of freedom, its energy manifold is three dimensional. From the work of Conley, it was
known that both the stable and unstable manifolds of the Lyapunov orbits around L1

and L2 are two dimensional. Hence, a dimension count suggests, but does not prove,
the existence of such a heteroclinic connection. Careful numerical investigations allow
us to show this connection is indeed present, as well as to isolate and study it.

Also, in dynamical systems theory, a heteroclinic orbit generally does not provide
a mechanism for a part of the phase space to eventually return near to where it
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started. But two (and more) heteroclinic orbits forming a cycle may provide this
mechanism and generate extremely complicated dynamics. This is indeed the case for
the PCR3BP.

4. In §3.6, we shall numerically show that , within an appropriate range of Jacobi con-
stant, there exist chains of two homoclinic orbits and a symmetric heteroclinic cycle,
as in Figure 1.2. The existence of these chains will be used in §4 to construct a suitable
Poincaré map which will allow us to classify as well as organize distinctively different
types of global motions of the PCR3BP in terms of ultimate behavior with respect to
the equilibrium points.

3.1 The Flow Mappings in the Interior and Exterior Regions of the
Energy Surface.

Energy Surface and Hill’s Region. We consider equations (2.4) on the energy surface
given by setting the Jacobi integral (2.5) equal to a constant. LetM be that energy surface,
i.e.,

M(µ,C) = {(x, y, ẋ, ẏ) | C(x, y, ẋ, ẏ) = constant} (3.1)

The projection of this surface onto position space is called a Hill’s region

M(µ,C) = {(x, y) | Ω(x, y) ≥ C/2}. (3.2)

The boundary of M(µ,C) is the zero velocity curve. The comet can move only within this
region in the (x, y)-plane. For a given µ there are five basic configurations for the Hill’s
region, the first four of which are shown in Figure 3.1.

Case 5 is where the comet is free to move in the entire plane. In this paper, our main
interest is in case 3; but for comparison we shall occasionally bring up case 2 which is the
main focus of LMS [1985]. The shaded region is where the motion is forbidden. The small
oval region on the right is the Jupiter region. The large near circular region on the left is
the interior region surrounding the Sun. The region which lies outside the shaded forbidden
region is the exterior region surrounding the Sun (and Jupiter).

The values of C which separate these five cases will be denoted Ci, i = 1, 2, 3, 4 which are
the values corresponding to the equilibrium points. These values can be easily calculated
for small µ and their graphs are shown in Figure 3.2. For case 3, the Jacobi constant
lies between C2 and C3 which are the Jacobi constants of the libration points L2 and L3

respectively. In this case, the Hill’s region contains a neck around both L1 and L2 and the
comet can transit from the interior region to the exterior region and vice versa.

Orbit Segments Winding around a Solid Torus. In McGehee [1969], the energy
surface is broken up further into regions bounded by invariant tori. These invariant tori
project onto the darkly shaded annuli shown for case 3 in Figure 3.3.

These annuli separate the Hill’s region into sections corresponding to the invariant re-
gions in the energy surface. It is interesting to note that for all of these cases the Sun and
Jupiter are separated from each other by an invariant torus (although we show only case
3), thus making it impossible for the comet to pass from the Sun to Jupiter. Similarly, the
two masses are separated from infinity by an invariant torus. We consider the regions of
the energy surface projecting to the area between the two darkly shaded annuli, A1 and A2,
i.e., the region containing Jupiter. The theorems of McGehee below show that all orbits
leaving the vicinity of one of the unstable periodic orbits proceed around the annulus T1 or
T2 before returning to that vicinity. The direction of procession is the same for all orbits,
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Figure 3.1: Four basic configurations of the Hill’s region.

counterclockwise in the interior region and clockwise in the exterior region. In §2, we have
studied the regions near the unstable periodic orbits to obtain a qualitative picture of the
asymptotic orbits. We shall combine this picture of asymptotic orbits with the fact that
orbits in the tori wind around in one direction to construct homoclinic orbits in both the
interior and exterior regions. See Figure 3.3(b).

Theorems of McGehee. To precisely state the theorems, we must first divide up the
Hill’s region and the energy surface. We know that for small µ the two equilibrium points
occur at a distance µ̃ on either side of Jupiter with

µ̃ =
2µ1/3

3
.

We isolate these points by drawing vertical lines on each side of them, i.e., lines at (1− µ±
c1µ̃, 0) and (1− µ± b1µ̃, 0), where b1 < 1 < c1. This divides the Hill’s region into five sets
as shown in Figure 3.4.

Let S and J be the regions that contain the Sun and Jupiter; let region R1 and region
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Figure 3.2: The partition of the (µ, C)-plane into five types of Hill’s regions.

R2 be those parts that contain the two equilibrium points L1 and L2, respectively; and let
X be the region that lies exterior to the orbit of Jupiter. We also divide the energy surface
M into sets projecting onto the regions shown in Figure 3.4. As before, we keep the same
name: e.g., region R1 for the set in the energy surface whose projection is the region R1

in the position space. Theorem 3.1 leads to the assertion that one can choose the division
described above so that we simultaneously have sufficient control of the flow in both regions S
and R1 to construct a homoclinic orbit. Theorem 3.2 makes the same assertion for regions
X and R2.

The analysis of regions R1 and R2 is of a local nature. In fact, we limit ourselves to
those values of the Jacobi constant for which the linearized equations about the equilibrium
point give us the qualitative picture of the flow. The flow for the linearized equations was
already analyzed in some detail in §2.

We know that for b1 and c1 close to 1, i.e., for the region R close to the periodic orbit,
the flow in R (which stands for both R1 and R2) is that shown in Figure 2.2. But we also
know that we cannot make c1 arbitrarily large without disturbing this qualitative picture for
R. On the other hand, we would like to make c1 large enough to obtain accurate estimates
on the behavior of the flow in S and X . The following theorems show that there exists a c1
which allows us to balance these two factors.

Theorem 3.1 There exist constants b1 and c1 and an open set O1 in the (µ,C)-plane (see
Figure 3.5) containing the graph of C = C1(µ) for small µ > 0 such that, for (µ,C) ∈ O1:

1. The energy surface M(µ,C) contains an invariant torus separating the Sun from
Jupiter.

2. For C < C1(µ), the flow in R1(µ,C) is qualitatively the same as the flow for the
linearized equations. (See Figure 2.2)

3. If we let T1 be that submanifold of M co-bounded by the invariant torus and n1 (see
Figure 3.5), then there exists a function

θ : T1 → R

such that :
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Figure 3.4: Division of Hill’s region into five sets.

(a) θ is a meridional angular coordinate for T1;
(b) θ is strictly increasing along orbits.

Theorem 3.2 There exist constants b1 and c1 and an open set O2 in the (µ,C)-plane
containing the graph of C = C2(µ) for small µ > 0 such that, for (µ,C) ∈ O2:

1. The energy surfaceM(µ,C) contains an invariant torus separating the Sun and Jupiter
from infinity.

2. For C < C2(µ), the flow in R2(µ,C) is qualitatively the same as the flow for the
linearized equations. (See Figure 2.2)

3. If we let T2 be that submanifold of M co-bounded by the invariant torus and n2, then
there exists a function

θ : T2 → R

such that :
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Figure 3.5: (a) Open set O1 in (µ, C)-plane. (b) The invariant torus.

(a) θ is a meridional angular coordinate for T2;

(b) θ is strictly increasing along orbits.

3.2 The Existence of Orbits Homoclinic to the Lyapunov Orbit.

Part 3 of the above theorems gives us the following properties for the flow in T where T
stands for either T1 or T2. The increase in θ along an orbit segment in T with endpoints in
the bounding sphere n is close to a non-zero integer multiple of 2π. The increase in θ along
any other orbit segment which can be deformed to the first, keeping both endpoints in the
bounding sphere n, is close to the same integer multiple of 2π. Furthermore, the increase
of θ along any orbit segment remaining for an arbitrarily long time in T is arbitrary large.
As will be shown, these are precisely the properties we need to carry out the proof of the
existence of a homoclinic orbit.

A Dichotomy. We assert that either a transverse homoclinic orbit exists, or “total de-
generacy” occurs. Total degeneracy is the case when every orbit asymptotic to the unstable
periodic orbit at one end is also asymptotic at the other end and hence is a homoclinic
orbit. In other words, the total degeneracy situation occurs when the stable and unstable
manifolds of the Lyapunov orbit coincide with each other. In either event we conclude the
existence of a homoclinic orbit. We shall sketch the proof below for completeness. For more
details, see Conley [1968] and McGehee [1969].

Assume that total degeneracy does not occur. The first step of the proof is to find an
orbit segment in T1 connecting either d−1 to a+

1 or a−1 to d+
1 as follows. See Figure 3.6.

Since T1 is compact and our flow, which is Hamiltonian, preserves a nondegenerate area
element, we can conclude that some orbit which crosses R1 (and the bounding sphere n1)
and so enters T1 must also leave T1 and recross R1 (and n1) the other way. See Figure 3.6.
Therefore, for some point p ∈ d−1 of n1, there is an orbit segment connecting p to a point
q ∈ d+

1 of n1. Recall that in R1, the spherical caps d−1 and d+
1 are where the flow crosses

n1.
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Figure 3.6: The existence of orbits homoclinic to the Lyapunov orbit.

Starting with this orbit segment connecting p to q, we can find an orbit segment con-
necting either d−1 to a+

1 or a−1 to d+
1 as follows. Let γ be an arc in d−1 linking p to a−1

(where γ ∩a−1 is not on a homoclinic orbit). If all of γ is carried by the flow to the spherical
cap d+

1 , then we shall have an orbit segment with one endpoint in a−1 and the other in d+
1 .

Otherwise, starting from p, there is some maximal initial half-open subarc γ′ of γ which is
carried by the flow to d+

1 . Let r be the first point of γ not in γ′, then the orbit segment
with one endpoint at r must become arbitrarily long. But the only way this orbit segment
can become arbitrarily long is to approach the asymptotic set, since the number of times it
can wind around T1 is finite and therefore must contain an arbitrarily long subsegment in
R1. Because of our knowledge of the flow in R1, we know that long orbit segments in R1

must lie close to the cylinders of asymptotic orbits and therefore r must be carried to a+
1 .

Hence, in either case we conclude that there is an orbit segment connecting the set d±1 in
one hemisphere to the set of asymptotic orbits in the other.

Now, without loss of generality, we can suppose that we have found an orbit segment
with one endpoint, called α, in a−1 and the other in d+. We now choose for γ the whole set
a−1 . Using arguments similar to the above, we can conclude that either all of a−1 is carried by
the flow inside d+

1 , or there exists a point β ∈ a−1 such that the orbit segment with β as an
endpoint becomes asymptotic at the other end. If the first possibility holds, we would have
a map of d− to the interior of d+, contradicting area preservation of Hamiltonian flow. Thus
we have proven that either transversal homoclinic orbits exist or total degeneracy occurs for
the interior region. The same proof also works for the exterior region.

3.3 The Existence of Transversal Homoclinic Orbits in the Interior
Region.

Conley [1968] and McGehee [1969] did not settle the issue of when one has transversality of
the homoclinic orbit families for the PCR3BP. Subsequently, LMS [1985] devoted their major
effort to show that under appropriate conditions, the invariant manifolds of the L1 Lyapunov
orbits do meet transversally. In this subsection, we shall summarize their analytical results.
Moreover, in §3.4 we shall also use the tools of Gómez, Jorba, Masdemont and Simó [1993]
to explore numerically the existence of transversal homoclinic orbits in both the interior and
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exterior regions.
To state the major analytical results of LMS [1985], we first need to set up some notation.

As mentioned earlier, near L1 and for values of C1 > C > C2 (case 2) there is a family
of unstable Lyapunov orbits. When C approaches C1 from below, the periodic orbit tends
to L1. There are one-dimensional invariant stable, W s

L1
, and unstable, Wu

L1
, manifolds

associated to L1. In a similar way the L1 Lyapunov orbit has two-dimensional invariant
manifolds W s

L1,p.o.,W
u
L1,p.o., locally diffeomorphic to cylinders. We recall that a homoclinic

orbit related to an equilibrium point L or to a periodic orbit L̄ is an orbit which tends to
L (or L̄) as t→ ±∞. Therefore, it is on the stable and unstable invariant manifolds of the
related object (L or L̄). A homoclinic orbit is called transversal if at some point of the orbit
the tangent spaces to the stable and unstable manifolds at that point span the full tangent
space to M(µ,C) at the same point.

Notice that equations (2.4) have the following symmetry

s : (x, y, ẋ, ẏ, t)→ (x,−y,−ẋ, ẏ,−t). (3.3)

Therefore, if we know the unstable manifold of L1 or of the Lyapunov orbit (which is a
symmetrical periodic orbit) the corresponding stable manifold is obtained through the use
of the stated symmetry. This observation will be used to find the transversal homoclinic
orbits.

Analytical Results for L1 Lyapunov Orbit in Interior Region. Using the basic
framework developed in McGehee [1969], LMS [1985] were able to prove the following two
analytical results. Together these two theorems imply that for sufficiently small µ and for
an appropriate range of ∆C = C1 −C, the invariant manifolds W s,S

L1,p.o. and Wu,S
L1,p.o. in the

interior region S intersect transversally.

Theorem 3.3 For µ sufficiently small, the branch Wu,S
L1

of Wu
L1

in the interior region S
has a projection on position space (see Figure 3.7(a)) given by

d = µ1/3

(
2
3
N − 31/6 + M cos t + o(1)

)
,

α = −π + µ1/3(Nt + 2M sin t + o(1)),

where d is the distance to the zero velocity curve, α is the angular coordinate and N and M
are constants.

In particular, for a sequence of values of µ which have the following asymptotic expres-
sion:

µk =
1

N3k3
(1 + o(1)), (3.4)

the first intersection of this projection with the x-axis is orthogonal to that axis, giving a
symmetric (1,1)-homoclinic orbit for L1. The prefix (1,1) refers to the first intersection
(with the Poincaré section defined by the plane y = 0, x < 0) of both the stable and unstable
manifolds of L1.

Theorem 3.4 For µ and ∆C = C1 − C sufficiently small, the branch Wu,S
L1,p.o. of Wu

L1,p.o.

contained initially in the interior region S of the energy surface intersects the plane y = 0
for x < 0 in a curve diffeomorphic to a circle (see Figure 3.7(b)).

In particular, for points in the (µ,C) plane such that there is a µk of Theorem 3.3 for
which

∆C > Lµ
4/3
k (µ− µk)2 (3.5)

holds (where L is a constant), there exist symmetric transversal (1,1)-homoclinic orbits.
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For details of the proofs, see LMS [1985]. We would like to make a few comments about
these results which are pertinent to the main thrust of our paper.

1. The main objective of both theorems is to study the transversality of the invariant
manifolds for the L1 Lyapunov orbit on the energy surface whose Jacobi constant C is
slightly less than C1(µ) as one varies µ and C. The main step is to obtain an expression
for the first intersection Γu,S

1 of the unstable manifold Wu,S
L1,p.o. with the plane y = 0 in the

region x < 0. While formulas were provided in LMS [1985] for this closed curve as a function
of µ and ∆C in the variables x, ẋ, they are quite complicated and difficult to interpret and
hence are not included here. But the key point is the following. According to Theorem 3.3,
the set of values of µ for which we have a symmetric (1,1)-homoclinic orbit associated to
L1 is discrete and is given by equation (3.4). Then for any other value of µ the unstable
manifold Wu,S

L1
of L1 reaches the (x, ẋ)-plane in a point (x1, ẋ1) outside ẋ = 0. Therefore, if

∆C is too small, Γu,S
1 does not cut the x-axis and hence (by symmetry) Γs,S

1 of the stable
manifold W s,S

L1,p.o. does not cut the x-axis either. Therefore the first intersections of the
invariant manifolds do not meet and there is no symmetric (1,1)-homoclinic orbit.

However, for a fixed value of µ, if we increase ∆C, we hope that Γu,S
1 of the unstable

manifold will become large. Therefore we can look for some value of ∆C such that Γu,S
1

becomes tangent to the x-axis or even intersects it at more than one point. Then, due to the
reversibility of the PCR3BP, Γs,S

1 of the stable manifold also intersects the x-axis at the same
points. Points P on the x-axis where Γu,S

1 and Γs,S
1 intersect correspond to (symmetric)

orbits homoclinic to the Lyapunov orbit (see Figure 3.7(b)). If Γu,S
1 is transversal to Γs,S

1 at
P then the homoclinic orbit is transversal. The results of Theorem 3.4 say that the above
phenomenon occurs if ∆C > Lµ

4/3
k (µ− µk)2 holds.

2. Using the results of Theorem 3.4, LMS [1985] was able to draw the mesh of homoclinic
tangencies for the (µ,∆C)-plane. The numbers in Figure 3.8 show the number of symmetric
(1,1)-homoclinic points found in the first intersection of Wu,S

L1,p.o. with the plane y = 0, x < 0
when one varies µ and ∆C. For us, the key point of the theorems is that for the wide
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range of µ which exist in the solar system, the invariant manifolds of the L1 Lyapunov orbit
intersect transversally for sufficiently large ∆C.

∆C

2
4

6

8

10

12

14

0
µk−1 µk

µ

µk+1

Figure 3.8: Partition of the (µ, ∆C)-plane according to the number of symmetric (1,1)-homoclinic points

found in the first intersection of W u,S
L1,p.o. with the plane y = 0, x < 0.

3. The heart of the proofs of these two theorems is to obtain expressions for Wu,S
L1

as a
function of µ and for Wu,S

L1,p.o. as a function of µ and ∆C. By using the basic framework of
McGehee [1969], LMS [1985] divided the annulus T1 in the interior region S into two parts:
a small neighborhood H near R1 and the rest of the region outside this small neighborhood.
In the neighborhood H, the PCR3BP can be considered as a perturbation of the Hill’s
problem. In celestial mechanics, it is well known that Hill’s problem studies the behavior
near the small mass of PCR3BP in the limit when µ approaches zero. In the rest of the region
away from the small mass, the PCR3BP can be approximated by the two-body problem in
a rotating frame. Through a number of careful estimations, LMS [1985] were able to obtain
these analytical results.

Summary. Conley [1968] and McGehee [1969] have proved the existence of homoclinic
orbits for both the interior and exterior region, and LMS [1985] have shown analytically
the existence of transversal symmetric (1,1)-homoclinic orbits in the interior region under
appropriate conditions. For our problem, we need to find transversal homoclinic orbits in
both interior and exterior regions as well as transversal heteroclinic cycles for the L1 and L2

Lyapunov orbits. We shall perform some numerical explorations using the tools developed
by the Barcelona group. For more details on finding invariant manifolds numerically, see
Gómez, Jorba, Masdemont and Simó [1993] and references therein.
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3.4 The Existence of Transversal Homoclinic Orbits in the Exterior
Region.

We turn our attention now to numerical explorations of the problem, and in particular,
to the existence of transversal homoclinic orbits for the L2 Lyapunov orbit in the exterior
region. Though there are no analytical results proving the existence of transversal homoclinic
orbits in the X region, we can construct them numerically by finding an intersection of the
manifolds W s

L2,p.o. and Wu
L2,p.o. on an appropriately chosen Poincaré section.

Numerical experiments guided by geometrical insight suggest that we cut the flow by
the plane y = 0, the line passing through the two masses in the rotating frame. The branch
of the manifold Wu

L2,p.o. which enters the X region flows clockwise in the position space.
We refer to this exterior branch of the manifold as Wu,X

L2,p.o.. See Figure 3.9(a). This two-
dimensional manifold “tube” Wu,X

L2,p.o. first intersects the plane y = 0 on the part of T2 which
is opposite to L2 with respect to the Sun (i.e., x < 0). The intersection, as one would expect
geometrically, is a curve diffeomorphic to a circle. We call this intersection the first “cut”
of Wu,X

L2,p.o. with y = 0. See Figure 3.9(b). Note that in order to define the first cut we
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Figure 3.9: (a) The position space projection of the unstable manifold “tube” W u,X
L2,p.o. until the first

intersection with the Poincaré section at y = 0, x < 0. (b) The first Poincaré cut Γu,X
1 of the manifold

W u,X
L2,p.o. on the plane y = 0, x < 0.

exclude a neighborhood of n2 in the X region. Some arcs of this curve produce successive
intersections without leaving the X region. The q-th of these intersections of Wu,X

L2,p.o. with
y = 0 will be referred to as Γu,X

q . In a similar manner we call Γs,X
p the corresponding p-th

intersection with y = 0 of the exterior region branch of W s
L2,p.o..

A point in y = 0 belonging to Γu,X
q ∩Γs,X

p (if not empty) will be called a (q, p)-homoclinic
point. The existence of (q, p)-homoclinic points for certain q and p is shown in McGehee
[1969].

Our goal is to obtain the first such transversal intersection of Γu,X
q with Γs,X

p and so
obtain a transversal (q, p)-homoclinic point. Other intersections (for larger q and p) may
exist, but we will restrict ourselves for now to the first. Suppose that the unstable manifold
intersection Γu,X

q is a closed curve γ in the variables x, ẋ. Let sx be the symmetry with
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respect to the x-axis on this plane. Then due to the reversibility of the PCR3BP, the q-th
intersection Γs,X

q of the stable manifold W s,X
L2,p.o. with y = 0 is sxγ. For some minimum q,

the closed curve γ intersects the ẋ = 0 line of the (x, ẋ)-plane. Points P along the curve
γ which intersect the ẋ = 0 line are (q, q)-homoclinic points, corresponding to (symmetric)
orbits homoclinic to the Lyapunov orbit. If the curve γ is transversal to the curve sxγ at
the point P then the homoclinic orbit corresponding to P is transversal. If intersections
between the curves γ and sxγ exist off the line ẋ = 0 (i.e., if the set (γ ∩ sxγ)\{ẋ = 0} is
nonempty), then nonsymmetric homoclinic orbits appear.

Consider Figure 3.9(b), where we used the values µ = 0.0009537 and ∆C = C2−C = .01
to compute the unstable Poincaré cut. If we also plotted the stable cut Γs,X

1 , which is the
mirror image of unstable cut Γu,X

1 , we would find several points of intersection. In Figure
3.10(a), we focus on the left-most group of points, centered at about x = −2.07. We find two
ẋ = 0 intersections which are transversal homoclinic points in the X region. The transversal
symmetric (1, 1)-homoclinic orbit corresponding to the left ẋ = 0 intersection is shown in
Figure 3.10(b).
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Figure 3.10: (a) A group of four transverse (1, 1)-homoclinic points. (b) The symmetric (1, 1)-homoclinic

orbit corresponding to the left ẋ = 0 (1, 1)-homoclinic point (the large black dot in (a)).

We also notice two off-axis intersections in Figure 3.10(a), completing the local transver-
sal intersection of two closed loops in the (x, ẋ)-plane. As these two intersections occur near
the line ẋ = 0, they will be nearly symmetric. A more pronounced case of nonsymmetry
occurs for the other group of intersection points centered near x = −1.15, for which we have
the nonsymmetric (1, 1)-homoclinic orbit given in Figure 3.11.
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Figure 3.11: A nonsymmetric (1, 1)-homoclinic point.

A similar procedure can numerically produce homoclinic orbits in the interior region as
well as in the Jupiter region. We can even look at cuts beyond the first. See Figure 3.12(a).

For example, in Figure 3.12(b) we show an interior region (1, 3)-homoclinic orbit (note,
also (2, 2) and (3, 1), using q̄ + p̄ = q + p) associated to an L1 Lyapunov orbit for µ =
.1,∆C = C1 − C = 0.0743.
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Figure 3.12: (a) The first three Poincaré cuts of the unstable (W u,S
L1,p.o.) and stable (W s,S

L1,p.o.) manifolds

with the plane y = 0. (b) A nonsymmetric (1, 3)-homoclinic orbit in the interior region (corresponding to

the large dot in (a)).

3.5 The Existence of Heteroclinic Connections between Lyapunov
Orbits.

We construct a heteroclinic connection between Lyapunov orbits of L1 and L2 by finding
an intersection of their respective invariant manifolds in the J region. To do so, we seek
points of intersection on a suitably chosen Poincaré section. For instance, to generate a
heteroclinic orbit which goes from an L1 Lyapunov orbit (as t→ −∞) to an L2 Lyapunov
orbit (as t→ +∞), we proceed as follows.

We restrict ourselves for now to case 3 (C2 > C > C3, see Figure 3.1), for which the
Hill’s region opens enough to permit Lyapunov orbits about both L1 and L2 to exist. Let
the branch of the unstable manifold of the L1 Lyapunov orbit which enters the J region be
denoted Wu,J

L1,p.o.. On the same energy surface (same C value) there is an L2 Lyapunov orbit,
whose stable manifold in the J region we shall similarly denote W s,J

L2,p.o.. The projection of
the two-dimensional manifold tubes onto the position space is shown in Figure 3.13(a).

To find intersections between these two tubes, we cut the flow by the plane x = 1 − µ.
See Figure 3.13(b).

This convenient plane maximizes the number of intersections for values of µ,C which
produce manifolds making a limited number of revolutions around Jupiter before escaping
from the J region. The q-th intersection of Wu,J

L1,p.o. with the plane x = 1−µ will be labeled
Γu,J

L1,q. Similarly, we will call Γs,J
L2,p the p-th intersection of W s,J

L2,p.o. with x = 1− µ.
Numerical experiments show that the L1 Lyapunov orbit unstable manifold Wu,J

L1,p.o.

does not coincide with the L2 Lyapunov orbit stable manifold W s,J
L2,p.o.. Moreover, for a

wide range of µ and C values (where C2 > C > C3), numerical explorations show that they
do intersect transversally. While it is true that for certain values of µ and C, there are
tangencies between the stable and unstable manifold, we will not deal with this interesting
case in this study. Hence, from now on, we will concentrate our numerical explorations only
on the cases where the stable and unstable manifold intersect transversally.
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Figure 3.13: (a) The projection of invariant manifolds W u,J
L1,p.o. and W s,J

L2,p.o. in the region J of the

position space. (b) The first two Poincaré cuts of the invariant manifolds with the plane x = 1 − µ.

Now, suppose that Γu,J
L1,q and Γs,J

L2,p are each closed curves in the variables y, ẏ. A point in
the plane x = 1−µ belonging to the intersection of the two closed curves (i.e., Γu,J

L1,q∩Γs,J
L2,p)

will be called a (q, p)-heteroclinic point because such a point corresponds to a heteroclinic
orbit going from the L1 Lyapunov orbit to the L2 Lyapunov orbit. Our objective is to obtain
the first intersection point (or group of points) of the curve Γu,J

L1,q with the curve Γs,J
L2,p and

so obtain the minimum values of q and p such that we have a transversal (q, p)-heteroclinic
point. Other intersections may exist, but we will restrict ourselves for now to the first.
For some minimum q and p, we have an intersection of the curves, and some number of
(q, p)-heteroclinic points, depending on the geometry of the intersection. Note that the sum
q + p must be an even positive integer.

As we are interested in heteroclinic points for the Sun-Jupiter system (µ = 0.0009537),
we took C = 3.037 and proceeded numerically to obtain the intersections of the invariant
manifolds Wu,J

L1,p.o. and W s,J
L2,p.o. with the plane x = 1 − µ. In Figure 3.13(b) we show the

curves Γu,J
L1,q for q = 1, 2 and Γs,J

L2,p for p = 1, 2. Notice that Γu,J
L1,2 and Γs,J

L2,2 intersect in two
points (the black dots in Figure 3.13(b) near y = 0.042). Thus, the minimum q and p for a
heteroclinic point to appear for this particular value of µ,C is q = 2 and p = 2. The (2, 2)-
heteroclinic points can each be forward and backward integrated to produce heteroclinic
trajectories going from the L1 Lyapunov orbit to the L2 Lyapunov orbit. We show one of
the heteroclinic orbits in Figure 3.14. Notice that the number of revolutions around Jupiter
is given by (q + p− 1)/2. The reverse trajectory, going from the L2 Lyapunov orbit to the
L1 Lyapunov orbit, is easily given by the symmetry s (3.3). It would be the mirror image
(about the x-axis) of the trajectory in Figure 3.14, with the direction arrows reversed. These
two heteroclinic connections together form a symmetric heteroclinic cycle.
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Figure 3.14: The existence of a transversal (2, 2)-heteroclinic orbit in the J region.

3.6 The Existence of Chains of Homoclinic Orbits and Heteroclinic
Cycles.

We have used a combination of analytical and numerical techniques to show the existence of
homoclinic and heteroclinic orbits associated to the L1 and L2 Lyapunov orbits for case 3.
We now take the final step, combining homoclinic and heteroclinic orbits of the same Jacobi
constant value to generate what is called a homoclinic/heteroclinic chain of orbits, which
connect asymptotically the L1 and L2 Lyapunov orbits to each other. As will be seen, these
chains imply a complicated dynamics connecting the interior, exterior, and Jupiter regions.

As an example, we again choose the Sun-Jupiter system (µ = 0.0009537), but now
a Jacobi constant value similar to that of comet Oterma during its Jupiter encounters
(C = 3.03). Using the described methodologies, we obtain an interior region orbit homoclinic
to the L1 Lyapunov orbit, an exterior region orbit homoclinic to the L2 Lyapunov orbit, and
a heteroclinic cycle connecting the L1 and L2 Lyapunov orbits. The union of these orbits
is a homoclinic-heteroclinic chain. See Figure 1.2. The existence of homoclinic-heteroclinic
chains has important consequences, which will be expanded upon further in §4.

4 Global Orbit Structure.

The idea of reducing the study of the global orbit structure of a system of differential
equations to the study of an associated discrete map is due to Poincaré [1890], who first
utilized the method in his studies of the restricted three-body problem. In this section we
shall use the chain of two homoclinic orbits and one symmetric heteroclinic cycle (previously
generated in §3) to construct a suitable Poincaré map. Our choice of Poincaré map will allow
us to study the complex global orbit structure near the chain. We shall find an invariant set
for this map near some transversal homoclinic and heteroclinic points along the chain where
“Smale horseshoe”-like dynamics exist. We shall then use symbolic dynamics to characterize
the chaotic motion of a comet in a neighborhood of the chain as it transitions intermittently
through the interior, Jupiter and exterior regions. Not only shall we prove the existence of
the invariant set, but we shall also numerically approximate it, gaining further insight into
the complex global dynamics associated with the chains.
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Here is additional detail about how we shall proceed:

1. In §4.1, we shall construct a Poincaré map P transversal to the flow whose domain U
consists of four different squares Ui, i = 1, 2, 3, 4, located in different regions of phase
space in the neighborhood of the chain. See Figures 4.1 and 4.2.
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U4U1
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Jupiter
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H1’

U2

E2

F2

G2’

H2’

U4

y = 0

x = 1−µ

x = 1−µ

y = 0

Figure 4.1: The construction of a suitable Poincaré map.

Squares U1 and U4 are contained in the surface y = 0 and each centers around
a transversal homoclinic point in the interior and the exterior region, respectively.
Squares U2 and U3 are contained in the surface x = 1−µ (y < 0 and y > 0, respectively)
and center around transversal heteroclinic points in the Jupiter region which are sym-
metric with respect to each other. Clearly, for any orbit which passes through a point
q in one of the squares and whose images and pre-images (Pn(q), n = 0,±1,±2, . . . )
all remain in the domain U , the whereabouts of Pn(q) (as n increases or decreases)
can provide some of the essential information about the history of the particular or-
bit. We record this history with a bi-infinite sequence. This well-known technique of
studying only the set of points that forever remain in the domain U (the invariant
set) provides us with all the periodic solutions as well as the recurrent solutions in the
neighborhood of the chain.

2. The technique of characterizing the orbit structure of a dynamical system via a set of
bi-infinite sequences of “symbols” is known as symbolic dynamics.

In §4.2 and §4.3, we shall extend the symbolic dynamics results of LMS [1985] to our
situation and construct a set of bi-infinite sequences with two families of symbols.
The first family is a subshift of finite type with four symbols {u1, u2, u3, u4}. It is
used to keep track of the whereabouts of an orbit with respect to the four squares
U1, U2, U3, U4. The symbol ui is recorded every time the Ui square is pierced by
the orbit. Subshift here means that among the set of all bi-infinite sequences of
four symbols, (i.e., (. . . , ui−1 ;ui0 , ui1 , ui2 , . . . ) where ij ranges from 1 to 4), certain
sequences where the adjacent entries in the sequence violate certain relations are not
allowed. For example, from U1, the (forward) flow cannot get to U4 without passing
through other squares. Hence, in the bi-infinite sequence, the symbol u1 cannot be
followed by u4. The relations can be defined by a matrix A called the transition
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matrix. In our case,

A =




1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1


 .

It is constructed by the following rule: (A)kl = 1 if the ordered pair of symbols uk, ul

may appear as adjacent entries in the symbolic sequence, and (A)kl = 0 if the ordered
pair of symbols uk, ul may not appear as adjacent entries. For example, since u1

cannot be followed by u4, we have (A)14 = 0.

The second family is a full shift of infinite type with symbols of positive integers greater
than a fixed integer m. This set of bi-infinite sequences of positive integers is used
to keep track of the number of integer revolutions that the projection of an orbit
winds around either L1 or L2 when the orbit enters the equilibrium regions R1 or R2,
respectively.

3. In §4.4, we shall state the main theorem of this section and discuss its implications.
The theorem gives the global orbit structure of the PCR3BP in a neighborhood of a
chain of homoclinic orbits and a symmetric heteroclinic cycle. It says essentially that
given any bi-infinite sequence

α = (u, r) = (. . . , (ui−1 , r−1); (ui0 , r0), (ui1 , r1), (ui2 , r2) . . . ),

there exist initial conditions near the transversal homoclinic and heteroclinic points
such that an orbit corresponding to such initial conditions starts at Ui0 and goes to
Ui1 (provided (A)i0i1 = 1). This orbit passes through either the equilibrium region
R1 or R2 depending on whether the initial index (i0 in the current case) is 1, 3 or
2, 4. For example if i0 = 1, then the projection of the orbit winds around L1 for r0

revolutions inside the region R1 before leaving for Ui1 . See Figures 4.1 and 4.2. After
that, the same process begins with (ui1 , r1) in place of (ui0 , r0) and (ui2 , r2) in place of
(ui1 , r1), etc. For negative time, a similar behavior is described for (ui−1 , r−1), (ui0 , r0),
etc. While the formalism involved in the proof is fairly standard, there are a few new
features which may be worth pointing out. While most of these comments will be made
earlier, we shall provide a sketch of the proof in §4.4 and §4.6 both for completeness
and for the convenience of the reader. For more details, one can consult Moser [1973],
LMS [1985] and Wiggins [1988, 1993].

4. In §4.5 we numerically construct sets of orbits with prescribed itineraries. By succes-
sive application of the Poincaré map P to a transversal plane in the neighborhood of
a chain, we can generate regions of orbits with itineraries of any size.

4.1 Construction of a Suitable Poincaré Map.

In §3, we have shown that with an appropriate Jacobi constant, there exists a chain of two
homoclinic orbits and one symmetric heteroclinic cycle. For simplicity of exposition, let us
suppose that the chain C consists of (1, 1)-transversal homoclinic orbits in the interior and
exterior regions and a symmetric (1, 1)-transversal heteroclinic cycle in the Jupiter region.
A similar study can be done for other cases.

Now we are ready to construct a Poincaré map. The first step is to construct the
transversal maps on the bounding spheres of the equilibrium regions R1 and R2. Let
ε1 and ε2 be small positive quantities. For the bounding spheres n1,1 and n1,2 of the
equilibrium region R1, we define A1, B1, C1, D1, E1, F1, G1 and H1 as the set of points
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of d−1,1, r
−
1,1, r

+
1,1, d

+
1,1, d

+
1,2, r

+
1,2, r

−
1,2 and d−1,2, respectively, such that ||ζ|2 − ρ∗| < ε. These

sets correspond to thin strips on the bounding sphere centered on the asymptotic sets
a−1,1, a

+
1,1, a

+
1,2 and a−1,2, respectively. Similarly, we can define corresponding strips for the

bounding spheres n2,1 and n2,2 of the equilibrium region R2. See Figure 4.2.
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Figure 4.2: The strips near the asymptotic sets on the spheres n1,1, n1,2, n2,1, n2,2.

If ε1 and ε2 are small enough, the flow is transversal to the surfaces just defined. Recall
from §2.4 that orbits entering R1 through C1, D1, E1, F1 leave it through B1, H1, A1, G1,
respectively, because |ζ|2 is a first integral in R1. Therefore the diffeomorphisms ψ1,i send
D1, E1, C1, F1 into H1, A1, B1, G1 respectively, for i = 1, 2, 3, 4. Similar results hold for
orbits entering R2 and the corresponding diffeomorphisms ψ2,i send D2, E2, C2, F2 into
H2, A2, B2, G2 respectively, for i = 1, 2, 3, 4.

The second step is to construct transversal maps outside of the equilibrium regions. Let
p1,1 ∈ a+

1,1 (resp. p2,2 ∈ a+
2,2) be a point of the transversal homoclinic orbit of C in the

interior (resp. exterior) region. Let A′
1 and B′

1 (resp. G′
2 and H ′

2) be the first images of
A1 and B1 (resp. G2 and H2) in n1,1 (resp. n2,2) sent by the forward flow outside R1

(resp. R2). The maps sending A1, B1, G2, H2 onto A′
1, B

′
1, G

′
2, H

′
2 are diffeomorphisms. In

a neighborhood of p1,1 (resp. p2,2) the qualitative picture of A′
1 and B′

1 (resp. G′
2 and H ′

2)
is shown in Figure 4.2 provided ε1 and ε2 are sufficiently small.

Similarly, let p1,2 ∈ a+
1,2 and p2,1 ∈ a+

2,1 be points of the transversal heteroclinic cycle of
C in the Jupiter region. Let A′

2 and B′
2 (resp. G′

1 and H ′
1) be the first images of A2 and B2

(resp. G1 and H1) in n1,2 (resp. n2,1) sent by the flow outside R1 and R2. The mappings
sending A2, B2, G1, H1 into A′

2, B
′
2, G

′
1, H

′
1 are diffeomorphisms. In a neighborhood of p1,2

(resp. p2,1) the qualitative picture of A′
2 and B′

2 (resp. G′
1 and H ′

1) is also shown in Figure
4.2.

Now let U1 (resp. U4) be the sets diffeomorphic to (C1∪D1)∩(A′
1∪B′

1) (resp. (E2∪F2)∩
(G′

2 ∪H ′
2)) defined by following the flow backwards up to the first crossing with the surface

y = 0. Similarly, let U2 (resp. U3) be the sets diffeomorphic to (C2 ∪D2)∩ (G′
1 ∪H ′

1) (resp.
(E1 ∪F1)∩ (A′

2 ∪B′
2)) defined by following the flow backwards up to the first crossing with

the surface x = 1− µ. See Figures 4.1 and 4.2. Since each of the sets Ui are topologically a
square, we shall refer to them loosely as squares in the rest of this section.

Let U = U1 ∪ U2 ∪ U3 ∪ U4. We define the Poincaré map P : U → U in the following
way: To each point q ∈ U we assign the corresponding first intersection point with U of the
orbit passing through q, if such an intersection exists. For simplicity of notation, we shall
loosely refer to U1 as (C1∪D1)∩(A′

1∪B′
1) even though U1 actually lies in the surface y = 0.

Similar convention will be used for the other Ui’s.
Now we shall consider the invariant set of points, Λ, which remain in U under all forward
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and backward iterations by P . Thus Λ is defined as

Λ = ∩∞
n=−∞Pn(U).

This invariant set contains all the periodic solutions as well as the recurrent solutions near
the chain and provides insight into the global dynamics in a neighborhood of the chain.

Compared with the standard textbook example which studies the chaotic dynamics in a
neighborhood of a transversal homoclinic point of a two-dimensional map f , the Poincaré
map P constructed in this section has a number of special properties.

Domain of the Poincaré Map P . Instead of studying the first return map f̄ (induced
by f) on a (small) topological square Q, the domain U of the Poincaré map P consists of
four squares Ui, i = 1, 2, 3, 4 which center around p1,1, p2,1, p1,2, p2,2, respectively. See Figure
4.3.
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A2' B2'

E1

F1

U4

G2' H2'

E2

F2

Figure 4.3: The families of horizontal strips (blue) and their images (orange) under P .

Moreover, the map P is not defined on points in U belonging to the invariant manifolds
of the L1 and L2 Lyapunov orbits. Take U1 as an example. On the curves Γu,S

L1,1 and
Γs,S

L1,1 which are the first intersections of the unstable and stable invariant manifolds of the
L1 Lyapunov orbit with the surface y = 0 in the interior (Sun) region, the Poincaré map
is singular because any point on those curves will be carried by the flow asymptotically
backward or forward towards the L1 Lyapunov orbit. Hence, we have a kind of singular
Poincaré map as it has been considered by Devaney [1981]. We shall return to this point at
the end of §4.3.

Therefore, we must consider in fact four small (open) squares in U1, namely:

(C1 ∩A′
1), (C1 ∩B′

1), (D1 ∩A′
1) and (D1 ∩B′

1).

Similar consideration is also needed for the other Ui’s which add up to sixteen small squares
in total. See Figure 4.4.

Horizontal and Vertical Strips. For the standard textbook example, the first return
map f̄ (induced by f) on the square Q qualitatively looks like a Smale horseshoe map.
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Figure 4.4: The domain U = U1 ∪ U2 ∪ U3 ∪ U4 of the Poincaré map P .

Conley and Moser found conditions for the map f̄ to satisfy in order for it to have an invariant
subset Λf̄ of Q on which it has chaotic dynamics. These conditions are a combination of
geometrical and analytical conditions.

1. The geometrical part consists of generalizing the notion of horizontal and vertical rect-
angles to horizontal and vertical strips in Q by allowing the boundaries to be Lipschitz
curves, rather than straight lines. With this generalization in hand one then requires
“horizontal” strips to map to “vertical” strips with horizontal boundaries mapping to
horizontal boundaries and vertical boundaries mapping to vertical boundaries.

2. The analytical part comes from requiring uniform contraction in the horizontal direc-
tions and expansion in the vertical direction.

H0

H1

f (H0) f (H1)

Q

Figure 4.5: Generalization of the notion of horizontal and vertical rectangles for the Conley-Moser condi-

tions.

For the Poincaré map P constructed in this section, the situation becomes more compli-
cated in two ways. First, the number of strips in each family generated after one iteration is
not two or even finite, but is instead infinite. Second, we need to use subshift to keep track
of the image of each family of strips. Here, we shall discuss first the issue of each family
having an infinite number of strips.

Let us consider U ∩ P (U). For simplicity of exposition, take U1 as an example and
consider the small squares (D1 ∩A′

1) and (D1 ∩B′
1). See Figure 4.6.

Recall the observation in §2.4 on the spiraling of an abutting arc with an endpoint in the
asymptotic set of a bounding sphere. The image of the squares (D1∩A′

1) and (D1∩B′
1) under

P is a strip contained in H ′
1 of arbitrarily long length, cutting U2 an infinite number of times
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Figure 4.6: The topological squares and the images of some rectangles. We show schematically only two

strips although there is an infinite number.

and spiraling towards Γu,J
L1,1, becoming skinnier when approaching the limit. The intersection

of this strip with U (in fact only with U2) forms an infinite number of components. All but
perhaps one of the components are limited by the sides e6 and e8. We call each of the
components of

P ((D1 ∩A′
1) ∪ (D1 ∩B′

1)) ∩ U ⊂ H ′
1

a vertical strip of H ′
1 (in U2).

Now consider all the vertical strips in H ′
1 and denote these by VH ′

1,0,VH ′
1,1, . . . , be-

ginning with the strips nearest to e5. We have on H ′
1 a family of vertical strips {VH ′

1,n}
bounded by the sides e6 and e8 (in U2) and with the width of VH ′

1,n tending to zero as n
tends to infinity. We define

VH ′
1,∞ = lim

n→∞
VH ′

1,n.

Clearly, VH ′
1,∞ is simply the vertical curve Γu,J

L1,1 which is on the Jupiter region branch of the
unstable invariant manifold of the L1 Lyapunov orbit. Similar constructions can be carried
out for the other small squares (C1∩A′

1) and (C1∩B′
1) of U1 which yield a family of vertical

strips in B′
1. In order to keep track of these families of vertical strips more effectively, we

shall rename {VB′
1,n} and {VH ′

1,n} as {V 11
n } and {V 21

n } respectively. Notice that for V ji
n ,

the index ji indicates that the family is in the square Uj and it came from the square Ui. For
simplicity of illustration, we have used rectangles to represent strips in Figure 4.6. Similar
representations will be used throughout the rest of this section.

Similarly, we can look at the first iterate by P of the other Ui’s and obtain families of
vertical strips in

B′
2({V 32

n }), H ′
2({V 42

n }), A′
1({V 13

n }), G′
1({V 23

n }), A′
2({V 34

n }), G′
2({V 44

n }).
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Therefore, U ∩P (U) is the disjoint union of eight families of pairwise disjoint vertical strips.
An analogous study can be done for U ∩P−1(U). Consider the small squares (D1 ∩A′

1)
and (C1∩A′

1) of U1. Then P−1((D1∩A′
1)∪(C1∩A′

1)) is a strip contained in E1 of arbitrarily
long length, cutting U3 an infinite number of times and spiraling towards Γs,J

L1,1, becoming
thinner while approaching the limit. The intersection of this strip with U (in fact only with
U3) forms an infinite number of components. All but perhaps one of the components are
limited by the sides e9 and e11. We call each of the components of

P−1((D1 ∩A′
1) ∪ (C1 ∩A′

1)) ∩ U ⊂ E1

a horizontal strip of E1 (in U3).
Now consider all the horizontal strips in E1 and denote these by HE1,0,HE1,1, . . . ,

beginning with the strip nearest to e10. We have on E1 a family of horizontal strips {HE1,n}
bounded by the sides e9 and e11 (in U3) and with the width of HE1,n tending to zero as n
tends to infinity. We define

HE1,∞ = lim
n→∞

HE1,n.

Clearly,HE1,∞ is simply the horizontal curve Γs,J
L1,1 which is on the stable invariant manifolds

of the L1 Lyapunov orbit.
Similar constructions can be carried out for the other small squares (C1 ∩ B′

1) and
(D1 ∩ B′

1) of U1 which yield a family of horizontal strips in C1. We shall again rename
{HC1,n} and {HE1,n} as {H11

n } and {H31
n } respectively. Notice that for Hij

n , the index ij
indicates that the family is in the square Ui and it will go to the square Uj .

Similarly, we can look at the first iterate by P−1 of the other Ui’s and obtain families of
horizontal strips in

D1({H12
n }), F1({H32

n }), C2({H23
n }), E2({H43

n }), D2({H24
n }), F2({H44

n }).

Therefore, U ∩ P−1(U) is the disjoint union of eight families of pairwise disjoint horizontal
strips.

Now we shall discuss briefly the meaning of the subscript n in the vertical strip V ji
n .

It can be used to keep track of the number of revolutions the projection of the associated
orbits wind around L1 or L2. For example, the orbit which pierces the vertical strip V 21

k+1

has wound one more time around L1 than the orbit which pierces the vertical strip V 21
k .

Moreover, given any ε1 for the width of the strips D1 and H ′
1, there is a minimum number

of integer revolutions rmin around L1 an orbit will make in going from D1 (in U1) to H ′
1 (in

U2). With this specific ε1, the orbit which pierces V 21
n has wound around L1 for (n + rmin)

times. In the rest of §4, we shall assume that we have adjusted the widths (the εj ’s) of all
the other corresponding pairs of strips so that the minimum number of revolutions around
L1 or L2 is the same for all the Ui’s. With this adjustment, any orbit which pierces V ji

n is
now in Uj . It came from Ui and has wound around L1 (if ui = 1, 3) or L2 (if ui = 2, 4) for
(n + rmin) times.

4.2 The Generalized Conley-Moser Conditions

For the standard textbook example (introduced in §4.1), about the dynamics near a transver-
sal homoclinic point, it is well known that if the first return map f̄ (induced by f) on the
square Q satisfies the following Conley-Moser conditions, then there exists an invariant set
Λf̄ of Q on which f̄ has chaotic dynamics.

Condition 1: There exist a finite (or possibly infinite) number of horizontal and vertical
strips Hi and Vi with i in an index set. The mapping f̄ takes Hi homeomorphically
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onto Vi, with horizontal boundaries mapped to horizontal boundaries and vertical
boundaries mapped to vertical boundaries.

Condition 2: Suppose V is a vertical strip contained in
⋃

i Vi. Then f̄(V) ∩ Vi = V̄i is a
vertical strip for every i. Moreover, w(V̄i) ≤ νvw(V) for some 0 < νv < 1 where w(V)
is the width of strip V. Similarly, suppose H is a horizontal strip contained in

⋃
iHi.

Then f̄−1(H) ∩Hi = H̄i is a horizontal strip for every i. Moreover, w(H̄i) ≤ νhw(H)
for some 0 < νh < 1.

We shall call Condition 1 the strip condition. Since Condition 2 requires a uniform
contraction in the horizontal direction and expansion in the vertical direction, it can be
called the hyperbolicity condition.

For the Poincaré map P constructed in §4.1, the situation is more complex. Now we have
four squares U1 through U4 together with eight families of pairwise disjoint horizontal strips
and eight families of pairwise disjoint vertical strips. We shall state below the theorem that
the Poincaré map P of the PCR3BP satisfies the generalized Conley- Moser conditions but
shall leave its proof to §4.5.

Theorem 4.1 The Poincaré map P satisfies the following generalized Conley-Moser con-
ditions:

Generalized Condition 1: P maps horizontal strips to vertical strips, i.e.,

P (H11
n ) = V 11

n P (H12
n ) = V 21

n P (H23
n ) = V 32

n P (H24
n ) = V 42

n

P (H31
n ) = V 13

n P (H32
n ) = V 23

n P (H43
n ) = V 34

n P (H44
n ) = V 44

n

for all positive integers n, with horizontal boundaries mapping to horizontal boundaries
and vertical boundaries mapping to vertical boundaries.

Generalized Condition 2: Let V be a vertical strip contained in
⋃

i V
13
i . Then

V ′
n = P (V ) ∩ V 11

n and V ′′
n = P (V ) ∩ V 21

n

are two vertical strips for every n. Moreover,

w(V ′
n) ≤ νvw(V ) and w(V ′′

n ) ≤ νvw(V )

for some 0 < νv < 1, where w(V ) is the width of V . Similarly, let H be a horizontal
strip contained in

⋃
i H

11
i . Then

H ′
n = P−1(H) ∩H31

n and H ′′
n = P−1(H) ∩H11

n

are two horizontal strips for every n. Moreover,

w(H ′
n) ≤ νhw(H) and w(H ′′

n) ≤ νhw(H)

for some 0 < νh < 1. Similar assertions are true for the other families of vertical and
horizontal strips.

Recall that

HC1,n = H11
n HD1,n = H12

n HE1,n = H31
n HF1,n = H32

n

HC2,n = H23
n HD2,n = H24

n HE2,n = H43
n HF2,n = H44

n

VA′
1,n = V 13

n VB′
1,n = V 11

n VG′
1,n = V 23

n VH ′
1,n = V 21

n

VA′
2,n = V 34

n VB′
2,n = V 32

n VG′
2,n = V 44

n VH ′
2,n = V 42

n
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where HC1,n is the n-th horizontal strip of the horizontal rectangle C1 and VA′
1,n is the n-th

vertical strip of the vertical rectangle A′
1, etc. Moreover, the index ij of {Hij

n } indicates
that the family is in the square Ui and it will go to the square Uj where the index ji of
{V ji

n } indicates that the family is in the square Uj and it came from the square Ui. See
Figure 4.6.

Even though the proof will be deferred to §4.6, we shall use this result to prove the main
theorem on the global orbit structure of the PCR3BP in §4.3 and §4.4

4.3 Symbolic Dynamics.

In §4.1 and §4.2, we have constructed a Poincaré map P on U whose domain consists of four
topological squares Ui, i = 1, 2, 3, 4, each of which is further subdivided into four smaller
squares by two curves that lie on the invariant manifolds of the Lyapunov orbits. Moreover,
P satisfies the generalized Conley-Moser conditions.

While we need to take stock of certain new features, the basic formalism developed by
Smale, Conley and Moser still holds with a few modifications.

For the horseshoe map h which bends a square D into a horseshoe and intersects it with
the square, one has an infinite Cantor set of trapped points p in the invariant set Λh. Here,

Λk = ∩∞
n=−∞hn(D),

which is the set of points in the square D that remain in the square under all forward and
backward iterations by h.

Recall that p can be defined by

p = {q ∈ D | hi(q) ∈ Hsi , i = 0,±1,±2, . . . }

where si denotes one of the elements in S = {0, 1} and H0, H1 are the two original horizontal
rectangles in D. Moreover, an address which is a bi-infinite sequence of two symbols {0, 1}
(in Σ2) can be attached to every point p in the invariant set Λh, which will not only describe
its location, but also tell its whole history and future under iteration of the map. By this
we mean that there is a map φ : Λh → Σ2 defined by

φ(p) = (. . . , s−n, . . . , s−1; s0, s1, . . . , sn, . . .)

where si = 0 if hi(p) ∈ H0 and si = 1 if hi(p) ∈ H1.
One easy way to imagine the invariant set Λh is to draw the regions that remain trapped

for one forward and one backward iteration in the square D. This is the intersection of
the thickest vertical and horizontal strips, so it is four squares lying in the corners of the
original square. The set trapped for two iterations forwards and two backwards is obtained
by intersecting the thinner strips of these figures, yielding sixteen smaller squares contained
in the four squares of the first stage. See Figure 4.7. Notice the addresses that have been
assigned to those squares. This process can be repeated ad infinitum. After infinitely many
steps, what remains is a Cantor set of points which are in one-to-one correspondence with
the set of bi-infinite sequences of two symbols {0, 1} shown above.

For the Poincaré map P , we can use a similar technique to visualize the invariant set Λ
and its associated set of bi-infinite sequences. Instead of one square D, we have four squares
Ui, 1 = 1, 2, 3, 4. After one forward and one backward iteration, instead of the intersections
of two vertical rectangles and two horizontal rectangles, we have the intersections of eight
families of vertical strips {V ji

n } and eight families of horizontal strips {Hij
n }, with the indices

ij corresponding to the nonzero entries of the transition matrix A. Recall from §4.1 that
for {V ji

n }, the index ji indicates that the family is in the square Uj and it came from the
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...0,0; ...1,0; ...1,1; ...0,1;

;1,0...

;1,1...

;0,1...

;0,0...

...1,0;1,1...

D

Figure 4.7: The invariant set Λh of the horseshoe map h.

square Ui; for {Hij
n }, the index ij indicates that the family is in the square Ui and it will

go to the square Uj . See Figure 4.8.
For simplicity of illustration, we draw Figure 4.8 schematically. Taking the family {H12

n }
as an example, we draw two horizontal rectangles to represent the first and the n-th hor-
izontal strips. This horizontal family is in the square U1 and it will go to the square U2

Similarly, for {V 13
m }, only the first and the m-th vertical rectangles are shown. This vertical

family is in the square U1 and it came from the square U3. The same method has been used
to illustrate all the other families of horizontal and vertical strips.

As for assigning the addresses for points remaining in U , take the “square” Q3;12
m;n as an

example. Since Q3;12
m;n is the intersection of the horizontal strip H12

n and the vertical strip
V 13

m , we can use (. . . , u3,m;u1, n, u2, . . . ) to represent its location. As usual, the central
block of this sequence also tells the history of the points in this “square” (Q3;12

m;n):

1. they are currently in U1 and will go to U2 and on their way their projection will wind
around L1 for (n+rmin) revolutions where rmin is the minimum number of revolutions
discussed earlier in §4.1;

2. they came from U3 and their projection has wound around L1 for (m + rmin) revolu-
tions.

Similar sequences can be assigned to the other “squares” which are the intersections of all
the other horizontal and vertical strips.

Moreover, since the Poincaré map P satisfies the generalized Conley-Moser conditions,
this process can be repeated ad infinitum as in the case of the horseshoe map. After an
infinite number of steps, what remains in U is a Cantor set of points which are in one-to-one
correspondence with the set of bi-infinite sequences

(. . . , (ui−1 , n−1); (ui0 , n0), (ui1 , n1), (ui2 , n2), . . . ).

Hence, we have shown that the invariant set Λ for the Poincaré map P corresponds to
a set of bi-infinite sequences with two families of symbols. The first family is a subshift
of finite type with four symbols {u1, u2, u3, u4} (with a transition matrix A defined at the
beginning of §4). It is used to keep track the history of the map P with respect to the four
squares U1, U2, U3, U4.

The second family is a full shift of infinite type with symbols of nonnegative integers.
This set of integers is used to keep track of individual member of each vertical or horizontal
family ({V ji

n } or {Hij
n }). As mentioned at the end of §4.1, this set of integers also corresponds

to the number of revolutions that the projection of an orbit winds around either L1 and L2.
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Figure 4.8: The invariant set Λ of the Poincaré map P .

Singular Poincaré Map. Now we shall discuss briefly the issue of the singular Poincaré
map and how it relates to certain modifications of the space of symbol sequences Σ. Let
Σ = {((uij

, nj))} be the set of bi-infinite sequences of elements of S × N with a transition
matrix A defined on S. Here, S = {u1, u2, u3, u4} and N is the set of non-negative integers.
As usual, a compactification Σ̄ of Σ is obtained with the inclusion of sequences of the
following types:

β = (. . . ; (ui0 , n0), . . . , (uik
,∞))

γ = (∞, (ui−l
, n−l), . . . ; (ui0 , n0), . . . )

δ = (∞, (ui−l
, n−l), . . . ; (ui0 , n0), . . . , (uik

,∞)).

The elements of Σ ⊂ Σ̄ will be called type α from now on. Moreover, the shift map σ on Σ
defined by σ((uij

, nj)) = (uij+1 , nj+1) can be extended to a shift map σ̄ in a natural way.
The domain of σ̄ is

D(σ̄) = {(u, n) ∈ Σ̄ | n0 �=∞}

and the range of σ̄ is

R(σ̄) = {(u, n) ∈ Σ̄ | n1 �=∞}.

By studying the Figure 4.8, it should be clear that H12
∞ (or H11

∞ ) is simply the horizontal
curve Γs,S

L1,1 which is on the interior (Sun) region branch of the stable invariant manifold of
the L1 Lyapunov orbit and any point on this curve will be carried forward asymptotically
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towards the L1 Lyapunov orbit. Hence, any element of type β corresponds to an orbit which
tends to either the L1 or L2 Lyapunov orbit asymptotically after k iterations. Similarly,
any element of type γ corresponds to an orbit which is carried by the flow asymptotically
backward towards one of the Lyapunov orbits after l backward iterations. As for an element
of type δ, we have either a homoclinic or a heteroclinic orbit.

4.4 Global Orbit Structure.

Now we are ready to put together all the results in §4.2 and §4.3 and to state the main
theorem of §4 which provides a symbolic dynamics description of the global orbit structure
of the PCR3BP near a chain of homoclinic orbits and a symmetric heteroclinic cycle. For
simplicity of exposition, we have assumed in the past that the chain consists of (1, 1)-
homoclinic orbits in the interior and exterior regions and a symmetric (1, 1)-heteroclinic
cycle in the Jupiter region. Now we shall consider the general situation. Let us suppose
from now on that the chain C is made up of a symmetric (q2, p2)-heteroclinic cycle in the
Jupiter region together with two homoclinic orbits, one of which is a (q1, p1) orbit in the
interior region and the other is a (q3, p3) orbit in the exterior region.

Theorem 4.2 Consider an element (u, r) ∈ Σ̄ with rj ≥ rmin for all j. Then there are
initial conditions, unique in a neighborhood of the given chain of two homoclinic orbits and
one symmetric heteroclinic cycle (associated with p1,1, p2,2, p1,2, p2,1 respectively), such that
the following statements are true.

1. For an element of type

α = (. . . , (ui−1 , r−1); (ui0 , r0), (ui1 , r1), (ui2 , r2), . . . ),

the orbit corresponding to such conditions starts at Ui0 and goes to Ui1 if (A)i0i1 = 1.
This orbit passes through either the equilibrium region R1 or R2 depending on whether
the initial index i0 is 1, 3 or 2, 4. If i0 = 1, 3, the projection of the orbit winds around
L1 for r0 revolutions inside the region R1 before leaving for Ui1 . Otherwise, it winds
around L2 for r0 revolution before leaving for Ui1 . After that, the same process begins
with (ui1 , r1) in place of (ui0 , r0) and (ui2 , r2) in place of (ui1 , r1), etc. For negative
time a similar behavior is described for (ui−1 , r−1), (ui0 , r0), etc.

For this orbit, the number of revolutions that the comet winds around Jupiter or the
Sun (in the interior or exterior region) is a constant which depends on the region and
the given chain of homoclinic orbits and heteroclinic cycle. For the Jupiter region,
the number is (q2 + p2 − 1)/2. For the interior and exterior regions, the number is
q1 + p1 − 1 and q3 + p3 − 1 respectively. Note that qi and pi are positive integers.

2. For an element of type

β = (. . . ; (ui0 , r0), . . . , (uik
,∞)),

the orbit tends asymptotically towards one of the Lyapunov orbits after k iterations. If
uik

= 1, 3, the orbit tends towards the L1 orbit and stays in region R1. If uik
= 2, 4,

it tends towards the L2 orbit and stays in region R2.

3. For an element of type

γ = (∞, (ui−l
, r−l), . . . ; (ui0 , r0), . . . ),

the orbit tends asymptotically backward towards one of the Lyapunov orbits after l
backward iterations. If ui−l

= 1, 2, the orbit tends towards the L1 orbit and stays in
region R1. If ui−l

= 3, 4, it tends towards the L2 orbit and stays in region R2.
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4. For an element of type

δ = (∞, (ui−l
, r−l), . . . ; (ui0 , r0), . . . , (uik

,∞)),

the orbit tends asymptotically towards the L1 or L2 Lyapunov orbit after k iteration,
depending on whether uik

= 1, 3 or 2, 4. It also tends asymptotically backward towards
the L1 or L2 orbit after l iterations backwards, depending on whether uil

= 1, 2 or 3, 4.

We shall provide a sketch of the proof here, which makes use of the major results in
§4.2 and §4.3. While we still need to fully establish the fact that the Poincaré map P does
satisfy the generalized Conley-Moser conditions as mentioned at the end of §4.2, we shall
defer their proofs to §4.6 so that we can discuss first the implications of this theorem.

Proof. First construct a Poincaré map P whose domain U consists of four different squares
Ui, i = 1, 2, 3, 4. Squares U1 and U4 are contained in the surface y = 0 and they center
around (q1, p1) and (q3, p3)-transversal homoclinic points in the interior and the exterior
region, respectively. Squares U2 and U3 are contained in the surface x = 1 − µ and center
around (q2, p2)-transversal heteroclinic points in the Jupiter region which are symmetric
with respect to each other.

Adjust the widths of all the corresponding pairs of the thin strips on the bounding
spheres so that the minimum number of revolutions rmin around L1 or L2 is the same for all
the Ui’s. With this adjustment, any orbit which pierces V ji

m is now in Uj . It came from Ui

and has wound around L1 (if ui = 1, 3) or L2 (if ui = 2, 4) for (m + rmin) times. A similar
analysis holds for Hji

n .
Assume that we have shown that the Poincaré map P satisfies the generalized Conley-

Moser conditions. Then our discussion in §4.3 on symbolic dynamics shows that for any
bi-infinite sequence of type α, α = (u, r), we can find initial conditions (u, n) in U such that
the orbit with this initial condition has exactly the history of (u, r). Here, rj = nj + rmin.
Similar arguments also hold for bi-infinite sequences of other types.

Some Additional Comments on the Implications of the Theorem. Type α orbits
include “oscillating,” “capture” and “non-transit” orbits. Recall that oscillating orbits are
orbits which cross from one region to the other infinitely many times, capture orbits are
orbits which cross sometime but eventually stay in one region, and non-transit orbits always
stay in the same region. Type β and type γ orbits are asymptotic orbits which wind to one
of the Lyapunov orbits. Type δ orbits are homoclinic and heteroclinic orbits.

Similar to the standard textbook example, it is easy to verify that both the shift map σ̄
and the Poincaré map P have the following properties:

1. a countable infinity of periodic orbits of all periods,

2. an uncountable infinity of nonperiodic orbits, and

3. a “dense orbit.”

Moreover, both σ̄ and P model the phenomenon that is called deterministic chaos in dynam-
ical systems theory. Most notably, they exhibit the phenomenon of sensitive dependence
on initial conditions, i.e., the distance between nearby initial conditions grows under some
fixed number of iterates. This phenomenon corresponds to the “random” jumping of the
comets between the interior, the Jupiter and the exterior regions.
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4.5 Numerical Construction of Orbits with Prescribed Itineraries

Throughout this paper, we have been developing a framework for understanding transport
in the PCR3BP. Fundamental to our approach has been the homoclinic-heteroclinic chain,
those objects which are the union of two homoclinic orbits and a symmetric heteroclinic
cycle. Early in our investigations, we noticed the similarity between observations of actual
comet orbits like Oterma and homoclinic-heteroclinic chains of the same energy. See Figure
4.9. Noting this similarity, we deduced that the same dynamics governing the motion
of the comets was at work in the chains. By exploring and cataloging the phase space
objects related to the chain, we gain insight into the dynamics of the temporary capture
and resonance transition of actual comets.
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Figure 4.9: (a) The homoclinic-heteroclinic chain corresponding to the Jupiter comet Oterma. (b) The

actual orbit of Oterma (AD 1910–1980) overlaying the chain.

In this section, we make this observation more concrete by exploring the complex orbit
structure in the neighborhood of a chain. What we have found is an invariant set of orbits, to
each of which we can attach an itinerary (e.g., (. . . , X, J, S, J, . . . ) in the informal notation)
describing the future and past history of the orbit for all time. Furthermore, Theorem 4.1
shows us that all permissible itineraries exist in the neighborhood of a chain.

The invariant set is a theoretical construct, and though useful for guiding our under-
standing and classification of the dynamics, its infinite nature renders it powerless to provide
us with usable trajectories. Computational and numerical methods must be brought to bear
which iteratively approximate the invariant set.

Numerical Construction of Orbits with Prescribed Itineraries. The description
of the construction of the invariant set in §4.3 involved successive iterations of the Poincaré
map P . Finite areas of finite central block itineraries evolved under successive application of
the map P into a “cloud of points,” the invariant set Λ of points with bi-infinite itineraries.
If we truncate the construction of the invariant set at some finite number of iterations of
P , we will find regions of phase space which have a certain finite itinerary. Orbits in such
regions will be robust. More specifically, the essential feature of the orbit, its itinerary, will
be robust because all the nearby orbits in phase space have the same finite itinerary. Thus,
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by truncating our construction of the invariant set Λ at some finite number of applications
of P , we can generate a set of robust orbits with different finite itineraries. The sets of orbits
with different itineraries are easily visualizable on our chosen Poincaré section as areas in
which all the orbits have the same finite itinerary. We will also no longer be limited to a
small neighborhood of a chain, but can obtain more global results.

Example Itinerary: (X, J, S, J,X). In what follows, we shall illustrate the numerical
construction of sets of orbits with prescribed itineraries. We shall of course be limited to an
itinerary of finite size, a central block. However, using our simple procedure, the size of this
central block can be arbitrarily large. We shall use the less formal sequence notation using
the symbols {S, J,X} to denote the location of the orbit in the interior (Sun), Jupiter, or
exterior regions, respectively.

As our example, we shall construct an orbit with the central block (X, J, S, J,X) which
roughly corresponds to the behavior of comet Oterma (AD 1910–1980) with respect to the
Sun-Jupiter system. This central block denotes an orbit which went from the exterior region
into the interior (Sun) region via the Jupiter region, and will then return to the exterior
region via the Jupiter region.

We seek regions of phase space which have the sequences (. . . , X, J, S, J,X, . . . ) with the
central block (X, J, S, J,X). We shall therefore systematically seek regions on a suitably
chosen Poincaré section which correspond to this central block. We shall take C = 3.038
(just below C2 in case 3) as our Jacobi constant. We choose this Jacobi constant because,
though it differs from Oterma’s (C = 3.03), it makes the visualization easier and preserves
the dynamics of Oterma’s transition. Moreover, in order to link the present numerical
construction with the earlier theoretical framework and terminology, we shall adopt the
following convention. The U1 and U4 (Poincaré) sections will be the planes (y = 0, x < 0) in
the interior region, and (y = 0, x < −1) in the exterior region, respectively. The U2 and U3

sections will be the planes (x = 1− µ, y < 0) and (x = 1− µ, y > 0) in the Jupiter region,
respectively.
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Figure 4.10: The first few transversal cuts of the L1 (stable) and L2 (unstable) Lyapunov orbit manifolds

on the U3 section in the Jupiter region. Notice the intersection region, in which all orbits have the central

block itinerary (X; J, S).

In Figure 4.10, we show the first few transversal Poincaré cuts of the L1 and L2 Lyapunov
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orbit manifolds on the U3 section in the Jupiter region J . Note that the Poincaré map is
area preserving owing to the Hamiltonian nature of the flow and the particular choice of
Poincaré section. Notice that there is an intersection ∆J for p + q = 6, where p = 1 is
the cut number for the L1 Lyapunov orbit stable manifold and q = 5 is the cut number for
the L2 Lyapunov orbit unstable manifold. The interior ∆s,J

L1,1 of Γs,J
L1,1 (the first cut of the

L1 Lyapunov orbit stable manifold) is connected to the spherical cap d+
1,2 of the bounding

sphere n1,2 by the stable manifold tube W s,J
L1,p.o.. Hence, ∆s,J

L1,1 contains all the orbits that
will go from the Jupiter region to the interior (Sun) region during their next close approach
to the L1 equilibrium region. Similarly, the interior ∆u,J

L2,5 of Γu,J
L2,5 (the fifth cut of the L2

Lyapunov orbit unstable manifold with the x = 1−µ plane, following the convention of §3)
is connected to the spherical cap d−2,1 of the bounding sphere n2,1 by the unstable manifold
tube Wu,J

L2,p.o.. Thus, ∆u,J
L2,5 contains all the orbits that entered the Jupiter region from the

exterior region and have completed two revolutions around Jupiter.
Therefore, the intersection

∆J = ∆s,J
L1,1 ∩∆u,J

L2,5

contains all the orbits that have come from the exterior region X into the Jupiter region J ,
have gone around Jupiter 21

2 (= (p+q−1)/2) times, and will enter the interior region S. The
region ∆J is the intersection of the image of the spherical cap d−2,1 and the pre-image of the
spherical cap d+

1,2. Therefore, from the discussion in §2, we know that orbits contained in
the intersection ∆J are those which entered the L2 equilibrium region R2 from the exterior
region X and which will exit the L1 equilibrium R1 into the interior region S. The orbits are
currently in the Jupiter region J . We can therefore attach the central block label (X;J, S)
to the intersection ∆J .

To determine regions of phase space with additional symbols of our desired central block,
we take the (X;J, S) region and evolve it forward under the equations of motion until it
intersects the U1 section in the interior region. In Figure 4.11 we show this Poincaré section.
Notice that the (X, J ;S) region lies entirely within the interior ∆u,S

L1,1 of the first interior
region cut Γu,S

L1,1 of the L1 Lyapunov orbit unstable manifold. We also see that a couple
of segments of the (X, J ;S) region intersect the interior ∆s,S

L1,1 of the first interior region
stable manifold cut Γs,S

L1,1. Any orbit within ∆s,S
L1,1, and therefore within the stable manifold

tube W s,S
L1,p.o., will be brought back to the Jupiter region. These intersecting segments ∆S

therefore carry the label (X, J ;S, J) and bring us one symbol closer (J) to our desired
central block.

We take the larger of the two intersecting segments and evolve it forward in time until it
re-enters the Jupiter region and intersects the U2 Poincaré section. See Figure 4.12. Notice
that the (X, J, S;J) region (the image of the larger segment of ∆S) lies entirely within
the interior ∆u,J

L1,1 of the first Jupiter region cut Γu,J
L1,1 of the L1 Lyapunov orbit unstable

manifold. This thin filament has a segment intersecting the interior ∆s,J
L2,5 of the Poincaré

cut Γs,J
L2,5 of the L2 Lyapunov orbit stable manifold. Any orbit in this intersection region ∆

will escape from Jupiter into the exterior region. Thus, any orbit in this segment ∆ can be
labeled with the central block (X, J, S;J,X), which is our desired finite itinerary.

We have forward and backward integrated an initial condition within this region to
illustrate the characteristics of an orbit corresponding to the (X, J, S;J,X) region. See
Figure 4.13. Orbits in the region are considered robust because nearby orbits have the same
finite itinerary. Regions corresponding to other allowable itineraries of any length can also
be generated with this same systematic procedure. Not only do we know such orbits exist,
but we have a relatively simple method for producing them.
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Figure 4.11: (a) Taking the (X; J, S) region of the U3 Poincaré section (see Figure 4.10), we evolve it until

it intersects the U1 Poincaré section in the interior region (lightly shaded). (b) A close-up of the intersection

of the (X, J ; S) region with the interior ∆s,S
L1,1 of Γs,S

L1,1, the first stable manifold cut of the L1 Lyapunov

orbit. Note the regions labeled (X, J ; S, J), which will return to the Jupiter region.

4.6 The Poincaré Map Satisfies The Generalized Conley-Moser
Conditions

The proof that the Poincaré map P satisfies the generalized Conley-Moser conditions follows
the same pattern as the proof given in LMS [1985]. We shall provide a sketch here mainly
for the convenience of the reader. For more details, see Moser [1974].

Strip Condition. The fact that the Poincaré map P satisfies the strip condition follows
from the lemma below. Since we have a heteroclinic cycle in our case, the proof of this
crucial lemma is slightly different from the proof in LMS [1985]. Hence, more detail will be
provided here.

Lemma 4.3 The Poincaré map P maps horizontal strips to vertical strips, i.e.,

P (HC1,n) = VB′
1,n P (HD1,n) = VH ′

1,n P (HC2,n) = VB′
2,n P (HD2,n) = VH ′

2,n

P (HE1,n) = VA′
1,n P (HF1,n) = VG′

1,n P (HE2,n) = VA′
2,n P (HF2,n) = VG′

2,n

for all positive integer n.

Proof. We illustrate the methods for the case P (HE1,n) = VA′
1,n. Since this case involves

the heteroclinic cycle, it is typical in our study. The other cases can be proved similarly.
Recall that the equations of the PCR3BP have a symmetry s which we have used earlier

to construct the stable manifold out of the unstable manifold. Since the heteroclinic cycle
in our chain is a symmetric one, we shall have the following relation:

P−1 = s−1 ◦ P ◦ s,

where s is regarded as the symmetry s restricted to the domain U of the Poincaré map.
Note s = s−1. In the following, we shall regard all operations on sets as taking place in U .
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Figure 4.12: (a) Taking the (X, J ; S, J) region of the U1 Poincaré section (see Figure 4.11), we evolve it

until it intersects the U2 Poincaré section (x = 1 − µ, y < 0) in the Jupiter region (lightly shaded). Part

(b) shows a close-up of the intersection of the (X, J, S; J) region with the interior ∆s,J
L2,5 of Γs,J

L2,5, the fifth

stable manifold cut of the L2 Lyapunov orbit. Note the region labeled (X, J, S; J, X), which will return to

the exterior region. This region contains orbits with the desired finite itinerary.

Also recall that

HE1,n ⊂ P−1((C1 ∩A′
1) ∪ (D1 ∩A′

1)) = sPs((C1 ∪D1) ∩A′
1) = sP (D1 ∩ (A′

1 ∪B′
1)).

But P (D1 ∩ (A′
1 ∪ B′

1)) is the family of vertical strips in H ′
1. It is equal to P (D1) ∩ H ′

1.
Therefore, we have

HE1,n ⊂ s(P (D1) ∩H ′
1) = sP (D1) ∩ E1 = P−1s(D1) ∩ E1 = P−1(A′

1) ∩ E1.

Applying the Poincaré map on both sides, we obtain

P (HE1,n) ⊂ A′
1 ∩ P (E1) = ∪∞

n=0VA′
1,n. (4.1)

Similarly, we have

P−1(VA′
1,n) = sPs(VA′

1,n) = sP (HD1,n) ⊂ s(∪∞
n=0VH ′

1,n) = ∪∞
n=0HE1,n.

Therefore,

VA′
1,n ⊂ ∪∞

n=0P (HE1,n). (4.2)

Using the relations (4.1) and (4.2) we find that

∪∞
n=0P (HE1,n) = ∪∞

n=0VA′
1,n.

Since the strips of the type HE1,n or VA′
1,n are pairwise disconnected, each one of the

strips HE1,n must be mapped by P onto one of the strips VA′
1,m. It remains to show that

m = n.
Let γ be a diagonal line in the square E1 ∩ B′

2. Clearly, γ intersects HE1,n for all n.
Pick a point γn in each intersection γ ∩HE1,n. Recall that {HE1,n} is ordered with respect
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Figure 4.13: (a) An orbit with the itinerary (. . . , X, J, S, J, X, . . . ) computed using an initial condition

inside the ∆ region of the U2 section (See Figure 4.12). (b) A close-up of this orbit in the Jupiter region.

to its distance from the longer edge eE of the rectangle E1. Therefore, the set {γn} can be
made into an ordered set (γ0, γ1, . . . , γn, . . . ) with respect to the ordering by distance from
the point γn to the edge eE .

After one iteration by P ,

γ ∩ ∪∞
n=0HE1,n is mapped into P (γ) ∩ ∪∞

n=0VA′
1,n.

The key observation is that since P (γ) spirals inward from the longer edge eA of the rectangle
A′

1, the set {P (γn)} can also be made into an order set (P (γ0), P (γ1), . . . , P (γn), . . . ) with
respect to the distance from the point P (γn) to the edge eA. Recall that

1. every VA′
1,m must contain one and only one P (γ) and

2. {VA′
1,m} is also ordered with respect to its distance from the longer edge eA.

It follows from this that m = n.

Hyperbolicity Condition. As pointed out earlier, for the standard textbook example
(introduced in §4.1), it is well known that if the first return map f̄ (induced by f) on the
square Q satisfies the Conley-Moser Conditions 1 and 2, then there exists an invariant set Λf̄

of Q on which f̄ has chaotic dynamics. However, a direct verification of whether f̄ satisfies
Condition 2 or not is non-trivial. When one thinks of stretching and contraction of maps,
it is natural to think of the properties of the derivative of the map (Df̄) at different points.
Hence, when the map f̄ is continuously differentiable, Condition 2 is usually replaced by
another equivalent condition (Condition 3) that is based solely on the properties of the
derivative of f̄ . Compared with Condition 2, Condition 3 is easier to check. While we shall
state only the Generalized Condition 3 in the following, the standard Condition 3 is exactly
the same with a couple of obvious modifications.

Define the unstable sector bundle Su (in the tangent bundle TU) over the families of
the horizontal strips as follows

Su
q = {(v, w) ∈ TpU | |v| ≤ κ|w|},
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where 0 < κ < 1/2 and q is a point in a horizontal strip. Similarly, the stable sector bundle
Ss over the families of the vertical strips is defined as

Ss
q = {(v, w) ∈ TpU | |w| ≤ κ|v|},

where q is a point in a vertical strip. Then the Poincaré map P is said to satisfy the
Generalized Condition 3 if the following two conditions are met:

(a) DP (Su
q ) ⊂ Su

P (q) and |w1| ≥ κ−1|w0| where (v1, w1) is the image of (v0, w0) under
DP ; i.e., the vertical component of a tangent vector gets amplified at least by κ−1

under DP .

(b) Similarly, DP−1(Ss
q ) ⊂ Ss

P−1(q) and |v−1| ≥ κ−1|v0| where (v−1, w−1) is the image
(v0, w0) under DP−1; i.e., the horizontal component of a tangent vector gets amplified
at least by κ−1 under DP−1.

Since the Generalized Condition 3 is based solely on the local properties of the derivative
of a map, the proof that Generalized Conditions 1 and 3 imply Generalized Condition 2 is
essentially the same as the standard proof that the Conditions 1 and 3 imply Condition
2 with some obvious modifications and hence will be skipped. For more details on the
standard case, see Moser [1973] and Wiggins [1990].

As for the proof that the Poincaré map P satisfies the Generalized Condition 3, the key
observation is that all the stretching and contraction by the map P takes place inside the
equilibrium regions R1 and R2. Recall that Ri is bounded by pairs of spheres ni,1 and ni,2

(for i = 1, 2) which contains the domain U of the map P (or more accurately four squares
whose union is diffeomorphic to U). See Figures 2.3 and 4.2. Inside these equilibrium
regions, the flow is exactly given by the linear equations (see §2.3) in suitable coordinates.
This flow satisfies the generalized Condition 3 with a constant κ that can be chosen as large
as desired provided that U is sufficiently small.

5 Resonance Transitions

5.1 Introduction.

Our new dynamical mechanism effecting transfer between the interior and exterior regions
is the heteroclinic intersection between the L1 and L2 Lyapunov orbit manifold tubes in the
Jupiter region. As mentioned previously, the orbits interior to these tubes are the transit
orbits of each equilibrium region. Therefore, their intersection is a set of orbits which come
from one heliocentric region (S or X) and exit to the other (X or S).

This was an unexpected result. It was previously believed that a third degree of freedom
was necessary for resonance transition or that “Arnold diffusion” was somehow involved.
But as we have seen, only the planar CR3BP is necessary. The dynamics and phase space
geometry involved in the heteroclinic connection now give us a language with which to
discuss and further explore resonance transition.

The dynamical channels discussed in previous sections are a generic transport mecha-
nism connecting the interior and exterior Hill’s regions. We shall now focus on a limited
case of this generic transport mechanism; the case of transport between resonances. In par-
ticular, we shall study how this homoclinic-heteroclinic transport mechanism connects the
mean motion resonances of the interior and exterior regions (e.g., the 3:2 and 2:3 Jupiter
resonances) via the Jupiter region.

Using numerical exploration of the heteroclinic connection between the interior and
exterior resonances, we shall obtain a deeper understanding of the mean motion resonance
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transition of actual Jupiter comets. In particular, we shall try to explain in more precise
terms the sense in which Oterma transitions between the 3:2 and 2:3 resonances. In the
process, we shall discover much about the mixed phase space structure, especially the mean
motion resonance structure, of the PCR3BP.

Recall that in §3.6 we constructed a homoclinic-heteroclinic chain C for the Sun-Jupiter
system and with a Jacobi constant value similar to that of comet Oterma during its Jupiter
encounters (C=3.03). See Figures 1.2 and 4.9. This chain is a union of four orbits: an interior
region orbit homoclinic to the L1 Lyapunov orbit, an exterior region orbit homoclinic to the
L2 Lyapunov orbit, and a symmetric heteroclinic cycle (two orbits) connecting the L1 and L2

Lyapunov orbits. For simplicity of exposition, we chose this particular chain because both
of its homoclinic orbits are of (1,1)-type and were constructed using the first Poincaré cuts
of their respective stable and unstable manifolds. Limiting our chain to (1,1)-type meant,
for this particular energy regime, that two different resonance connections were possible; 3:2
to 1:2 and 3:2 to 2:3. We chose the 3:2 to 2:3 chain for our exploration.

Theorem 4.1, or more accurately its simplified version, tells us that in a neighborhood
of this particular C, there exists an orbit O whose symbolic sequence (. . . , J,X, J, S, J, . . . )
is periodic and has a central block itinerary (J,X, J, S, J). Because this orbit transitions
between the interior and exterior regions (the neighborhood of the 3:2 and 2:3 resonances,
in particular), we call this kind of itinerary a resonance transition block. This orbit makes
a rapid transition from the exterior region to the interior region and vice versa, passing
through the Jupiter region. It will repeat this pattern ad infinitum.

We have commented earlier that while an orbit with this exact itinerary is very fragile,
the structure of nearby orbits whose symbolic sequences have a central block like the orbit
O, namely (J,X, J, S, J), is quite robust. In fact, we have devised simple procedures to
construct sets of orbits with such specific characteristics (as encoded in the central block
itinerary) in the previous section.

We will study how this particular chain C and its nearby dynamical channels connect
the 3:2 resonance of the interior region and the 2:3 resonance of the exterior region.

Delaunay Variables. Recall that the PCR3BP is a perturbation of the two-body prob-
lem. Hence, outside of a small neighborhood of L1, the trajectory of a comet in the interior
region follows essentially a two-body orbit around the Sun. In the heliocentric inertial
frame, the orbit is nearly elliptical. The mean motion resonance of the comet with respect
to Jupiter is equal to a−3/2 where a is the semi-major axis of this elliptical orbit. Recall
that the Sun-Jupiter distance is normalized to be 1 in the PCR3BP. The comet is said
to be in p:q resonance with Jupiter if a−3/2 ≈ p/q, where p and q are small integers. In
the heliocentric inertial frame, the comet makes roughly p revolutions around the Sun in
q Jupiter periods. See Figure 5.1, where we illustrate a numerically constructed orbit O′,
which has a central block sequence (J,X, J, S, J). Similar observations also hold for orbits
in the exterior region outside of a small neighborhood of L2.

To study the process of resonance transition, we shall use a set of canonical coordinates,
called Delaunay variables, which make the study of the two-body regime of motion par-
ticularly simple, and thus simplify the perturbation arguments for the PCR3BP. Tradition
holds that the Delaunay variables in the rotating coordinates are denoted l, ḡ, L, and G. See
Figure 5.2. The quantity G is the angular momentum, while L is related to the semi-major
axis a, by L = a1/2, and hence encodes the mean motion resonance (with respect to Jupiter
in the Sun-Jupiter system). Both l and ḡ are angular variables defined modulo 2π. The
angle ḡ is the argument of the perihelion relative to the rotating axis. The angle l is the
mean anomaly. It is the ratio of the area swept out by the ray from the Sun to the comet
starting from its perihelion passage to the total area. For more detail, see Szebehely [1967],
Abraham and Marsden [1978], and Meyer and Hall [1992].
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Figure 5.1: (a) The orbit O′, with itinerary (J, X, J, S, J), in the rotating frame. (b) The orbit O′ in the

heliocentric inertial frame. (c) Plot of a versus t for the orbit O′. Important mean motion resonances 3:2

and 2:3 are also shown for comparison.
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Figure 5.2: Geometry of the Delaunay variables. Elliptical orbits in the fixed (inertial) and rotating

frames.

5.2 Interior and Exterior Resonances.

Interior Resonances. Figure 5.3 shows the first Poincaré cuts of the stable and unstable
manifolds of an L1 Lyapunov orbit with the U1 section (y = 0, x < 0). They have been
plotted using Delaunay variables L and ḡ.

The striking thing is that the first cuts of the stable and unstable manifolds intersect
exactly at the region of the 3:2 resonance. Recall that the interior ∆s,S

L1,1 of Γs,S
L1,1 (the

first cut of the stable manifold) is connected to the spherical cap d+
1,1 of the bounding

sphere n1,1 by the stable manifold tube. Hence, ∆s,S
L1,1 contains all the orbits that will go

from the interior (Sun) region to the Jupiter region during the next close approach to the
L1 equilibrium region. Similarly, the interior ∆u,S

L1,1 of Γu,S
L1,1 (the first cut of the unstable

manifold) contains all the orbits that came from the Jupiter region into the interior (Sun)
region during their previous close approach to the L1 equilibrium region. Therefore, their
intersection ∆S = ∆s,S

L1,1 ∩ ∆u,S
L1,1 contains all the orbits that have come from the Jupiter

region J into the interior region S, gone around the Sun once (in the rotating frame), and
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Figure 5.3: The interior region U1 Poincaré section showing the first cuts of the stable (Γs,S
L1,1) and

unstable (Γu,S
L1,1) manifolds of an L1 Lyapunov orbit. Notice their intersection at the 3:2 resonance. The

background points reveal the mixed phase space of stable periodic and quasiperiodic tori “islands” embedded

in a bounded chaotic “sea.”

will return to the Jupiter region. In the heliocentric inertial frame, these orbits are nearly
elliptical outside a neighborhood of L1. See Figure 5.1. They have a semi-major axis which
corresponds to 3:2 resonance by Kepler’s law (i.e., a−3/2 = L−3 ≈ 3/2). Therefore, any
Jupiter comet which has an energy similar to Oterma’s and which circles around the Sun
once in the interior region must be in 3:2 resonance with Jupiter.

Also note that the point PS , which is on the boundary of ∆S , is a symmetric (1,1)-
homoclinic point which we have used to construct the symmetric (1,1)-homoclinic orbit
in Figure 1.2. This also explains the reason for marking it as a homoclinic orbit which
corresponds to the 3:2 resonance.

The black background points in Figure 5.3 reveal the character of the interior region
phase space for this Jacobi constant surface. They were generated by picking one hundred
evenly spaced initial points along the y = 0, ẋ = 0 line (with the same Jacobi constant
C = 3.03). These initial points were each integrated for several hundred iterations of the
Poincaré map on the U1 section and then transformed into Delaunay variables.

The background points reveal a mixed phase space of stable periodic and quasiperiodic
tori “islands” embedded in a bounded chaotic “sea.” The families of stable tori, where a
“family” denotes those tori islands which lie along a strip of nearly constant L, correspond
to mean motion resonances. The size of the tori island corresponds to the dynamical signif-
icance of the resonance. The number of tori islands equals the order of the resonance (e.g.,
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3:2 is order 1, 5:3 is order 2). In the center of each island, there is a point corresponding
to an exactly periodic, stable, resonant orbit. In between the stable islands of a particular
resonance (i.e., along a strip of nearly constant L), there is a saddle point corresponding to
an exactly periodic, unstable, resonant orbit. In Figure 5.3, the intersection region ∆S is
centered on this saddle point for the 3:2 resonance.

A subset of the interior resonance intersection region ∆S is connected to exterior reso-
nances through a heteroclinic intersection in the Jupiter region. We have plotted this subset
as the small strip inside ∆S . This subset is part of the dynamical channel which connects
the interior and exterior resonances. This is the robust resonance transition mechanism
which we have sought. More on the resonance transition will be discussed below.

Exterior Resonances. Similar to Figure 5.3 for the interior region, Figure 5.4 shows the
first exterior region Poincaré cuts of the stable and unstable manifolds of an L2 Lyapunov
orbit with the U4 section on the same Jacobi constant surface (C = 3.03). They have been
plotted, as before, using the Delaunay variables L and ḡ.
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Figure 5.4: The exterior region U4 Poincaré section showing the first cuts of the stable (Γs,X
L2,1) and unstable

(Γu,X
L2,1) manifolds of an L2 Lyapunov orbit. Notice their intersections at the 2:3 and 1:2 resonances. The

background points reveal a mixed phase space similar to that of Figure 5.3.

Notice that the first cuts of the stable and unstable manifolds intersect at two places;
one of the intersections is exactly at the region of the 2:3 resonance, the other is at the 1:2
resonance. We would like to point out that ḡ is an angle variable modulo 2π and hence the
two intersections near L = 1.26 should be identified.

Recall that the interior ∆s,X
L2,1 of Γs,X

L2,1 (the first cut of the stable manifold) is connected
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to the spherical cap d+
2,2 of the bounding sphere n2,2 by the stable manifold tube. Hence,

∆s,X
L2,1 contains all the orbits that will go from the exterior region to the Jupiter region in

the next round. Similarly, the interior ∆u,X
L2,1 of Γu,X

L2,1 (the first cut of the unstable manifold)
contains all the orbits that have come from the Jupiter region into the exterior region in the
previous round. Therefore, their intersection

∆X = ∆s,X
L2,1 ∩∆u,X

L2,1

contains all the orbits that have come from the Jupiter region J into the exterior region
X , have gone around the Sun once (in the rotating frame), and will return to the Jupiter
region. Notice that ∆X has two components, one at the 2:3 resonance region and the other
at the 1:2 resonance region.

In the heliocentric inertial frame, these orbits are nearly elliptical outside a neighborhood
of L2. They have a semi-major axis which corresponds to either 2:3 or 1:2 resonance by
Kepler’s law. Therefore, any Jupiter comet which has an energy similar to Oterma’s and
which circles around the Sun once in the exterior region must be in either 2:3 or 1:2 resonance
with Jupiter.

Note that the point PX , which is on the boundary of ∆X at the 2:3 resonance region,
is a symmetric (1,1)-homoclinic point that we have used to construct the symmetric (1,1)-
homoclinic orbit of the exterior region in Figure 1.2. This also explains why we have marked
it as a homoclinic orbit which corresponds to the 2:3 resonance.

The background points in Figure 5.4 were generated by a technique similar to those in
Figure 5.3. They reveal a similar mixed phase space, but now the resonances are exterior
resonances (exterior to the orbit of Jupiter). We see that the exterior resonance intersection
region ∆X envelops both the 2:3 and the 1:2 unstable resonance points.

A portion of ∆X is connected to interior resonances through a heteroclinic intersection
in the Jupiter region. In particular, a subset of the 2:3 intersection region of ∆X connects
to the 3:2 intersection region of ∆S via a heteroclinic intersection in the Jupiter region. We
have plotted this subset as the small strip inside ∆X . Note that this strip is the pre-image of
the strip in ∆S of Figure 5.3. This is the resonance transition dynamical channel shadowed
by the Jupiter comet Oterma during its recent resonance transition.

5.3 Resonance Transitions.

We have made reference to a heteroclinic intersection connecting the interior ∆S and ex-
terior ∆X resonance intersection regions. In Figure 5.5, we show the image of ∆X (the
2:3 resonance portion) and the pre-image of ∆S in the J region. Their intersection ∆J

contains all the orbits whose itineraries have the central block (J,X;J, S, J), corresponding
to at least one transition between the exterior 2:3 resonance and interior 3:2 resonance. The
orbit O′ of Figure 5.1 is such an orbit passing through the region J .

Note the point PJ , which lies in the intersection of the boundaries of ∆X (the 2:3
resonance portion) and the pre-image of ∆S . This point PJ corresponds to a heteroclinic
connection between the exterior 2:3 and interior 3:2 resonances. In a neighborhood of
PJ , the dynamical channel connects the 3:2 interior resonance region with the 2:3 exterior
resonance region. The periodic orbit O referred to earlier, which goes from 3:2 to 2:3 and
back again ad infinitum, lies in this neighborhood.

The orbit of comet Oterma (from 1910 to 1980) also lies in the neighborhood of PJ , in
the region with itinerary (X, J, S, J,X), as determined from §4.5. Oterma does not perform
the “exact” exterior to interior homoclinic-heteroclinic resonance transition defined by the
sequence (J,X, J, S, J), but as a nearby trajectory (and “nearby” itinerary), it exhibits a
similar transient behavior. We note that Oterma exhibits only one transition during the
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(J, X; J, S, J), corresponding to the itinerary of this group of orbits.

time interval (a few hundred years, centered on the present) for which there is reliable
orbit data. It begins in the exterior region close to the 2:3 resonance (i.e., a−3/2 ≈ 2/3), is
perturbed by Jupiter into an exactly homoclinic 3:2 resonance (3 revolutions around the Sun
in 2 Jupiter periods), and is then nearly symmetrically perturbed into the exterior region,
slightly beyond the 2:3 resonance. See Figure 4.9.

It is reasonable to conclude that, within the full three-dimensional model, Oterma’s orbit
lies within an analogous region of phase space which carries the label (X, J, S, J,X). It is
therefore within the L1 and L2 manifold tubes, whose complex global dynamics lead to
intermittent behavior, including resonance transition.

More study is needed for a thorough understanding of the resonance transition phe-
nomenon. The tools developed in this paper (dynamical channels, symbolic dynamics, etc.)
should lay a firm theoretical foundation for any such future studies.

6 Conclusions and Future Work.

In this paper, we have applied dynamical systems techniques to the problem of heteroclinic
connections and resonance transitions in the planar circular restricted three-body problem
(PCR3BP). One of the main results in this paper is the semi-analytical discovery of a
heteroclinic connection between L1 and L2 periodic (Lyapunov) orbits having the same
energy (Jacobi constant). This augments the known homoclinic orbits associated to the L1

and L2 Lyapunov orbits which were proven to exist by McGehee [1969] and LMS [1985]. By
linking these heteroclinic connections with homoclinic orbits on the same Jacobi constant
surface, we have found dynamical channels that provide a fast transport mechanism between
the interior and exterior Hill’s regions. This rapid transport mechanism, which occurs with
only two degrees of freedom, is a dynamical systems phenomenon not to be confused with
Arnold diffusion.

The channels provide a starting point for understanding the transport mechanisms con-
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necting mean motion resonances, and in particular, those mechanisms which link interior
and exterior resonances (e.g., the 3:2 and 2:3 Jupiter resonances) via the Jupiter capture
region. By comparing observations of the orbits of Jupiter comets like Oterma with the
dynamical channels discovered herein, we conclude that the comets are guided by these
dynamical channels. See Figures 1.2 and 4.9.

Moreover, these dynamical channels could be exploited by spacecraft to explore a large
region of space near Earth (and near Earth’s orbit) using low-fuel controls. In fact, the
channels can be utilized around any planet or moon system. Behavior related to the dy-
namical channels has already been observed by Lo, Williams, et al. [1998] in the trajectory
for the Genesis Discovery Mission, which exhibits near-heteroclinic motion between L1 and
L2 in the Sun-Earth system. See Figure 6.1. With a better understanding of the underlying
homoclinic-heteroclinic structures we should be able to construct and control spacecraft tra-
jectories with desired exotic characteristics (e.g., transfer between L1 and L2 orbits, explore
interior region and then return to Earth’s vicinity).
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Figure 6.1: (a) A homoclinic-heteroclinic chain on the Genesis Discovery Mission trajectory’s energy

surface. (b) Close-up of the chain in Earth’s vicinity. The actual Genesis Discovery Mission trajectory is

shown in black overlaying the chain, and in particular, the heteroclinic connection from L1 to L2.

Greater space mission flexibility could be achieved post-launch owing to the sensitivity
of the phase space in these dynamical channels. Miniscule fuel expenditures could lead to
dramatically different spacecraft trajectories. One could turn a near-Earth mission into an
asteroid rendezvous and return mission in situ with an appropriately placed small thrust.
Rather than being a hindrance to orbital stability, sensitivity facilitates mission versatility.

Extension to Three Dimensions. The natural extension of our work is to apply the
same methodology to the three-dimensional CR3BP. We will seek homoclinic and hetero-
clinic orbits associated with three-dimensional periodic “halo” and quasi-periodic “quasi-
halo” and Lissajous orbits about L1 and L2. Their union would be three-dimensional
homoclinic-heteroclinic chains around which the symbolic dynamics could be used to track
a variety of exotic orbits.

The three-dimensional chains would provide an initial template for the construction of
actual spacecraft trajectories. By presenting a more complete portrait of the phase space ge-
ometry near L1 and L2, the three-dimensional channels will be of enormous benefit in the de-

61



sign and control of constellations of spacecraft in these regions. The homoclinic-heteroclinic
structures suggest natural low-fuel paths for deployment of constellation spacecraft to and
from Earth. They will aid in the design of control schemes necessary for space missions
such as NASA’s Terrestrial Planet Finder (TPF) which must maintain precise coordinated
pointing and relative separation of the formation flying spacecraft.

The three-dimensional dynamical channels may also provide a more complete under-
standing of phase space transport mechanisms. In particular, they may elucidate the res-
onance transition process for Jupiter comets which have large excursions out of Jupiter’s
orbital plane.

Coupling of Two Three-Body Systems. To obtain a better grasp of the dynamics
governing transport between adjacent planets (or moons), we could apply our methodology
to the coupled PCR3BP. The coupled PCR3BP considers two nested co-planar three-body
systems, such as for two adjacent giant planets competing for control of the same comet (e.g.,
Sun-Jupiter-comet and Sun-Saturn-comet). When close to the orbit of one of the planets, the
comet’s motion is dominated by the corresponding planet’s three-body dynamics. Between
the two planets, the comet’s motion is mostly heliocentric, but is precariously poised between
two competing three-body dynamics. In this region, heteroclinic orbits connecting Lyapunov
orbits of the two different three-body systems may exist, leading to complicated transfer
dynamics between the two adjacent planets. See Figure 1.3.

This transfer dynamics, which may be realized in actual comet behavior, could be ex-
ploited for free transfers of spacecraft between adjacent moons in the Jovian and Saturnian
systems (Lo and Ross [1998]). For instance, one could conduct a “Petit Grand Tour” of the
Jovian moon system, an example of which is shown in Figure 1.3. By systematically seeking
heteroclinic connections between libration point orbits of adjacent moons, one could design
trajectories which transfer from the vicinity of one moon to another using fuel-minimizing
controlled thrusts.

Merging Optimal Control and Stabilization with Dynamical Systems Theory.
The construction of exotic spacecraft orbits using homoclinic-heteroclinic dynamical chan-
nels requires optimal thruster controls to navigate these dynamically sensitive regions of
phase space. Using optimal, fuel minimizing impulsive and continuous thrust, is the most
efficient and natural way to take advantage of the delicate dynamics.

Lawden [1963] developed Primer Vector Theory, the first successful application of optimal
control theory to minimize fuel consumption for trajectories with impulsive thrusts in the
two-body problem. The extension of Primer Vector Theory to continuous low-thrust control
for the restricted three-body problem is a current area of active research. Our work on this
problem indicates that developing optimal control theory within the dynamical systems
framework shows promise for producing a numerical solution in the three-body context.

In our ongoing effort to use the methods of optimal controls to study the orbit transfer
problem for certain JPL space missions, we are exploring the “direct” method for solving
the optimal control problem. In the direct method, the optimal control problem can be first
approximated by a discrete optimization problem using a collocation or multiple shooting
discretization scheme. Then the resulting optimization problem is solved numerically with
a sophisticated sequential quadratic programming (SQP) technique. While the numerical
algorithm of the direct method is quite robust for certain types of two-body problems, we
do not expect that application to the three-body regime will be completely straightforward.
It would also be interesting to explore the ways in which optimal control in the presence of
mechanics (as in, for example, Koon and Marsden [1997]) is useful in this problem.

As usual, for any numerical algorithm, a good initial guess is vital, especially if the
problem is very sensitive numerically. Dynamical systems theory can provide geometrical
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insight into the structure of the problem and even good approximate solutions. For example,
in finding low-thrust optimal transfers to L1 halo orbits in the Sun-Earth system, it is
important to know that the invariant manifolds of the halo orbits extend to the vicinity of
the Earth and any trajectory on these manifolds can be used as a super-highway for free
rides to and from the halo orbits. See Figure 6.2.
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Figure 6.2: A transfer trajectory from low Earth orbit to an L1 halo orbit. This trajectory was constructed

using the stable manifold of the halo orbit. The arrows attached to the halo orbit point in the direction of

the stable manifold.

Clearly, this theoretical insight and its derivative numerical tools can aid in the con-
struction of superior initial guesses that lead to a convergent solution.

A deeper understanding of the dynamical structure of the restricted three-body problem,
including the ideas we have contributed in this paper, may suggest alternative formulations
of the optimizing scheme which are based more on the geometry of the phase space. In-
stead of “numerically groping in the dark”, algorithms could be developed with the natural
dynamics built in, thereby yielding better convergence properties.

In addition to the optimal control problem of getting to a halo orbit, there are well known
techniques for stabilizing the dynamics once one gets there. Some of these techniques are
related to the general theory of stabilizing dynamics near saddle points and homoclinic or
heteroclinic orbits, as in Bloch and Marsden [1989]. In addition, it would be of interest to
explore the use of other stabilization techniques that make use of the mechanical structure
for problems of this sort, as in Bloch, Leonard and Marsden [1997].

Symplectic Integrators. The use of symplectic integrators for the long time integrations
of the solar system is well known through the work of Tremaine, Wisdom and others. In
many problems in which the dynamics is delicate or where there are delicate controls, care
is needed with integration algorithms. The area of integration algorithms for mechanical
systems continues to develop and be implemented; see for example, Wendlandt and Marsden
[1997], Kane, Marsden and Ortiz [1999], and Kane, Marsden, Ortiz and West [1999] and
references therein. These techniques are very effective for both conservative mechanical
systems as well as systems with forcing, such as controlled systems. It would be of interest
to explore these numerical methods in the context of space mission design and other orbital
mechanics problems.
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Pattern Evocation. The resonant structures that one sees in the rotating frames of
interest in the present paper appear similar to what one sees in the phenomenon of pattern
evocation (see Marsden and Scheurle [1995], Marsden, Scheurle and Wendlandt [1996]) when
rotationally symmetric systems are viewed from the point of view of an appropriate rotating
frame. Of course for the restricted three body problem there is a simple and natural choice
of a rotating frame. However, for the full three body problem or other situations, the general
theory still suggests that appropriate rotating frames can be found relative to which simple
resonant phenomena would be evoked. It would be of interest to explore this link further.

Four or More Body Problems. While the planar CR3BP model provides an adequate
explanation for a class of Jupiter comets whose Jacobi constant is close to (and less than)
C2 and whose motion is close to the plane of Jupiter’s orbit, it fails to explain resonance
transition phenomena for high inclination Jupiter comets and comets not dominated solely
by Jupiter. For this second class of comets, other effects such as out-of-plane motion and
perturbation by other giant planets, most notably Saturn, are quite strong and need to be
considered. Though the Jupiter comets exhibit their transitions on relatively short time-
scales (tens to hundreds of years), rare terrestrial planet encounters (with Earth and Mars)
also need to be considered. In short, the study of this second class of comets require the
complete storehouse of tools needed in the study of the near-Earth asteroids, regarded by
many as the most challenging topic in celestial mechanics.

However, since the mean motion resonances (mostly with Jupiter) and their associated
transport mechanisms still play the dominant role in solar system material transport, this
paper can be seen as laying a firm foundation for any future studies in this direction. We
may need to consider other more complicated models like the full three-dimensional CR3BP
and the coupled PCR3BP as mentioned above. As Lo and Ross [1997] suggested, further
exploration of the phase space structure as revealed by the homoclinic-heteroclinic structures
and their association with mean motion resonances may provide deeper conceptual insight
into the evolution and structure of the asteroid belt (interior to Jupiter) and the Kuiper
Belt (exterior to Neptune), plus the transport between these two belts and the terrestrial
planet region. See Figure 6.3(a).

Potential Earth-impacting asteroids may utilize the dynamical channels as a pathway to
Earth from nearby, seemingly harmless heliocentric orbits which are in resonance with the
Earth. The same dynamics which allows us to construct libration point space missions such
as the Genesis Discovery Mission, which is on a natural Earth collision orbit, is also the
dynamics that could bring unexpected Earth impactors. This phenomena has been observed
recently in the impact of comet Shoemaker-Levy 9 with Jupiter, which was in 2:3 resonance
with Jupiter (one of the resonances dynamically connected to the Jupiter region) just before
impact.

Zodiacal Dust Cloud. Numerical simulations of the orbital evolution of asteroidal dust
particles show that the Earth is embedded in a circumsolar ring of asteroidal dust known
as the zodiacal dust cloud (Dermott et al. [1994]). Both simulations and observations
reveal that the zodiacal dust cloud has structure. When viewed in the Sun-Earth rotating
frame, there are several high density clumps (∼10% greater than the background) which are
mostly evenly distributed throughout the Earth’s orbit. The simulations of Dermott et al.
[1994] considered the gravitational effects of the actual solar system and non-gravitational
forces: radiation pressure, Poynting-Robertson light drag, and solar wind drag. The dust
particles are believed to spiral in towards the Sun from the asteroid belt, becoming trapped
temporarily in exterior mean motion resonances with the Earth. They are then scattered by
close encounters with the Earth leading to further spiraling towards, and eventual collision
with, the Sun.
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Figure 6.3: (a) Dynamical channels in the solar system. We plot the (local) semi-major axis versus the

orbital eccentricity. We show the L1 (grey) and L2 (black) manifolds for each of the giant outer planets.

Notice the intersections between manifolds of adjacent planets, which leads to chaotic transport. Also shown

are the asteroids (dots), comets (circles), and Kuiper Belt objects (lighter circles). (b) The zodiacal dust

ring around the Earth’s orbit, as modeled by Earth’s L1 and L2 stable and unstable manifolds. We show

the Sun-Earth rotating frame. Notice the “clumps” in Earth’s orbit.

We suspect that the gross morphology of the ring is given by a simpler CR3BP model
involving the homoclinic and heteroclinic structures (the dynamical channels) associated
with L1 and L2 (Lo and Ross [1997]). See Figure 6.3(b).

The drag forces do not destroy the dynamical channel structure, but instead seem to lead
to convergence onto the structure for particles spiraling in from the inner asteroid belt. Once
trapped in a channel, the dynamics naturally lead to transport (via an Earth encounter)
into the interior region, where drag forces dominate once more.

As with the Earth, the structure of any extrasolar terrestrial planet’s zodiacal dust
ring is probably dominated by the three-body dynamics. As the particular features of the
ring structure (i.e., width of ring, number of high density clumps) are characteristic of the
particular mass ratio of the planet to the star, one could use the structure observed in an
extrasolar zodiacal dust ring to determine the mass of the planet, assuming the mass of
the star could be determined using spectroscopic methods. The Terrestrial Planet Finder
mission could use such a scheme to detect terrestrial planets embedded in the zodiacal dust
rings of nearby stars.

A New Paradigm for a New Millennium. A century has passed since Poincaré in-
troduced dynamical systems theory to study the restricted three-body problem. Yet this
system still enchants us with its rich structure and dazzling spectrum of behaviors despite its
deceptively simple formulation. With the fundamental dynamical systems tools developed
herein, we stand poised to appreciate and utilize this rich structure in ways Poincaré could
only imagine.
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