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Abstract

This paper concerns heteroclinic connections and resonance transitions in the planar circular
restricted 3-body problem, with applications to the dynamics of comets and asteroids and the design
of space missions such as the Genesis Discovery Mission and low energy Earth to Moon transfers.
The existence of a heteroclinic connection between pairs of equal energy periodic orbits around two of
the libration points is shown numerically. This is applied to resonance transition and the construction
of orbits with prescribed itineraries. Invariant manifold structures are relevant for transport between
the interior and exterior Hill’s regions, and other resonant phenomena throughout the solar system.

1 Introduction.

Resonant Transition in Comet Orbits. Some Jupiter comets such as Oterma and Gehrels 3 make
a rapid transition from heliocentric orbits outside the orbit of Jupiter to orbits inside that of Jupiter
and vice versa. During this transition, the comet may be captured temporarily by Jupiter for several
orbits. The interior orbit is typically close to the 3:2 resonance while the exterior orbit is near the 2:3
resonance. During the transition, the orbit passes close to the libration points L1 and L2, two of the five
equilibrium points (in a rotating frame) for the planar circular restricted 3-body problem (PCR3BP) for
the Sun-Jupiter system. The equilibrium points L1 and L2 are the ones closest to Jupiter, lying on either
side of Jupiter along the Sun-Jupiter line, with L1 being between Jupiter and the sun.

The Relevance of Invariant Manifolds. Belbruno and B. Marsden [1997] considered the comet
transitions using the “fuzzy boundary” concept. Lo and Ross [1997] used the PCR3BP as the under-
lying model and related it to invariant manifolds, noticing that the orbits of Oterma and Gehrels 3 (in
the Sun-Jupiter rotating frame) closely follow the invariant manifolds of L1 and L2. We develop this
viewpoint along with another key ingredient, a heteroclinic connection between periodic orbits around
L1 and L2 with the same Jacobi constant (a multiple of the energy for the PCR3BP) and the dynamical
consequences of such an orbit. Invariant manifold structures associated with L1 and L2 periodic orbits
and the heteroclinic connections assist in the understanding of transport throughout the solar system.
We have drawn upon work of the Barcelona group on the PCR3BP, in particular, Llibre, Martinez and
Simó [1985] as well as works of Moser, Conley and McGehee. Specific citations are given later.

Heteroclinic Connections. A numerical demonstration is given of a heteroclinic connection between
pairs of equal energy periodic orbits, one around L1, the other around L2. This heteroclinic connection
augments the previously known homoclinic orbits associated with the L1 and L2 periodic orbits. Linking
these heteroclinic connections and homoclinic orbits leads to dynamical chains which form the backbone
for temporary capture and rapid resonance transition of Jupiter comets. See Figure 1.1.
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Figure 1.1: The homoclinic-heteroclinic chain corresponding to the Jupiter comet Oterma. Shown are the periodic

orbits about L1 and L2, their homoclinic orbits and the heteroclinic connection between them. The orbit of Oterma (AD

1910–1980) is shown overlaying the chain. Distances are in Astronomical Units (AU).

Existence and Construction of Transition Orbits. We have proved the existence of a large class
of interesting orbits near a chain which a comet can follow in its rapid transition between the inside and
outside of Jupiter’s orbit via a Jupiter encounter. The collection of these orbits is called a dynamical
channel. We also use this term when collections of such chains for separate 3-body systems, roughly
speaking, overlap and are put end to end. We can label orbits near a chain with an itinerary giving
their past and future whereabouts, making their classification and manipulation possible. We prove the
existence of orbits with prescribed itineraries, and develop a systematic procedure for their numerical
construction.

Applications to Space Mission Design. The systematic procedures developed here can be used
to design spacecraft orbits which explore a large region of space in the vicinity of the Earth (and near
Earth’s orbit) using low-fuel controls. Behavior related to the dynamical channels has already been
observed in the trajectory for NASA’s Genesis Discovery Mission, which exhibits near-heteroclinic mo-
tion between L1 and L2 in the Sun-Earth system (Lo et al. [1998]). A better understanding of the
homoclinic-heteroclinic structures allows one to construct and control spacecraft trajectories with desired
characteristics. Specifically, these techniques can be used to construct a “Petit Grand Tour” of the moons
of Jupiter. We can design an orbit which follows a prescribed itinerary in its visit to the many moons
(e.g., one orbit around Ganymede, four around Europa, etc.). See Figure 1.2.

Earth to Moon Transfer with Ballistic Capture. We apply similar techniques used to generate
the “Petit Grand Tour” to produce a lunar capture mission which uses less fuel than a Hohmann transfer.
We approximately decouple the Sun-Earth-Moon-Spacecraft 4-body problem into two 3-body problems.
Using the invariant manifold theory of the Lagrange points of the 3-body systems, we construct low
energy transfer trajectories from the Earth to a ballistic capture at the Moon.

Optimal Control and Halo Orbit Mission. We address the computation of the required trajectory
correction maneuvers (TCM) for a halo orbit space mission (like Genesis) to compensate for the launch
velocity errors introduced by inaccuracies of the launch vehicle. By combining dynamical systems theory
with optimal control techniques, we produce a portrait of the complex landscape of the trajectory design
space. This approach enables parametric studies not available to mission designers a few years ago, such
as how the magnitude of the errors and the timing of the first TCM affect the correction ∆V .
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Figure 1.2: The “Petit Grand Tour” space mission concept for the Jovian moons. In our example, we show an orbit

coming into the Jupiter system and (a) performing one loop around Ganymede (shown in the Jupiter-Ganymede rotating

frame), (b) transferring from Ganymede to Europa using a single impulsive maneuver (shown in the Jupiter-centered inertial

frame), and (c) getting captured by Europa (shown in the Jupiter-Europa rotating frame).

2 A Few Key Features of the Three Body Problem.

The Planar Circular Restricted Three-Body Problem. The comets of interest are mostly he-
liocentric, but their perturbations are dominated by Jupiter’s gravitation. Moreover, their motion is
nearly in Jupiter’s orbital plane, and Jupiter’s small eccentricity (0.0483) plays little role during the fast
resonance transition (less than or equal to one Jupiter period in duration). The PCR3BP is therefore an
adequate starting model for illuminating the essence of the resonance transition process.

Equations of Motion. The two main bodies, such as the Sun and Jupiter, have masses mS = 1− µ
and mJ = µ, so the total mass that is normalized to one. (See Figure 2.1(a)). These bodies rotate in
the plane counterclockwise about their common center of mass and with the angular velocity normalized
to one. The third body, the comet or the spacecraft , has small mass that does not affect the primary
motion, and is free to move in the plane. Choose a rotating coordinate system so that the origin is at
the center of mass and the Sun (S) and Jupiter (J) are fixed on the x-axis at (−µ, 0) and (1 − µ, 0)
respectively. Let (x, y) be the position of the comet in the plane (so these are the position coordinates
relative to the positions of the Sun and Jupiter, not relative to an inertial frame).

The equations of motion of the comet are (see, eg, Szebehely [1967])

ẍ− 2ẏ = Ωx, ÿ + 2ẋ = Ωy, where Ω =
x2 + y2

2
+

1 − µ
r1

+
µ

r2
+
µ(1 − µ)

2
, (2.1)

Ωx,Ωy are the partial derivatives of Ω and r1 and r2 are the distances of the comet from the main bodies.
A first integral, the Jacobi integral is C(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2) + 2Ω(x, y) = −2E(x, y, ẋ, ẏ), where E
is the energy. For a Hamiltonian approach, see Abraham and Marsden [1978] or Meyer and Hall [1992].

Equilibrium Points and Hill’s Regions The system (2.1) has five equilibrium points, 3 collinear
ones on the x-axis, called L1, L2, L3 and two equilateral points called L4, L5. The value of the Jacobi
integral at the point Li will be denoted by Ci. The level surfaces of the Jacobi constant, which are also
energy surfaces, are invariant 3-dimensional manifolds. Let M be that energy surface, i.e., M(µ,C) =
{(x, y, ẋ, ẏ) | C(x, y, ẋ, ẏ) = constant}. The projection of this surface onto position space is called a Hill’s
region, M(µ,C) = {(x, y) | Ω(x, y) ≥ C/2}. The boundary of M(µ,C) is the zero velocity curve. The
comet can move only within this region in the (x, y)-plane. We study orbits whose Jacobi constant is just
below that of L2, that is, C < C2. For this case, the Hill’s region contains a “neck” about L1 and L2,
as shown in Figure 2.1(b). Thus, orbits with a Jacobi constant just below that of L2 are energetically



permitted to make a transit through the neck region from the interior region (inside Jupiter’s orbit)
to the exterior region (outside Jupiter’s orbit) passing through the Jupiter region.
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Figure 2.1: (a) Equilibrium points of the PCR3BP as viewed in the rotating frame. (b) Hill’s region (schematic, the

region in white), which contains a “neck” about L1 and L2. (c) The flow in the region near L2, showing a periodic orbit, a

typical asymptotic orbit, two transit orbits and two non-transit orbits. A similar figure holds for the region around L1.

The Flow near the Lagrange Points L1 and L2. Having fixed on an appropriate energy level
surface, a major result of Conley [1963, 1968] on the flow near the equilibrium points L1 and L2 shows
that in each equilibrium region around L1 or L2, there are four types of orbits (see Figures 2.1(c)): the
periodic Liapunov orbit, the asymptotic orbits that wind onto this periodic orbit, the transit orbits that
the comet uses to make a transit from one region to the other and the non-transit orbits where the comet
comes out of one region and passes near the critical point only to fall back into the same region.

3 Heteroclinic Connections and Resonance Transition.

We give a numerical demonstration of a heteroclinic connection between a pair of equal energy periodic
orbits, one around L1 and one around L2. This heteroclinic connection augments the homoclinic orbits
associated with the L1 and L2 periodic orbits, which were previously known. By linking these heteroclinic
connections and homoclinic orbits, we get dynamical chains which form the backbone for temporary
capture and rapid resonance transition of Jupiter comets. See Figure 1.1.

The Existence of Heteroclinic Connections between Periodic Orbits. To find a heteroclinic
connection between the periodic orbits mentioned in the previous paragraph, we find an intersection of
their respective invariant manifolds in the J region (Jupiter region of phase space) within a suitably
chosen Poincaré section. For instance, to generate a heteroclinic orbit which goes from an L1 periodic
orbit (as t → −∞) to an L2 periodic orbit (as t → +∞), we proceed as follows. Let the branch of the
unstable manifold of the L1 periodic orbit which enters the J region be denoted Wu,J

L1,p.o.. On the same
energy surface there is an L2 periodic orbit, whose stable manifold in the J region we shall similarly
denote W s,J

L2,p.o.. The projections of the two-dimensional manifold tubes onto position space are shown in
Figure 3.1(a). To find intersections between these two tubes, we cut the flow by the plane x = 1−µ, as in
Figure 3.1(b). The q-th intersection of Wu,J

L1,p.o. with the plane x = 1−µ will be labeled Γu,J
L1,q. Similarly,

we will call Γs,J
L2,p the p-th intersection of W s,J

L2,p.o. with x = 1 − µ. Numerical computations show that
(for small p and q), the L1 periodic orbit unstable manifold Wu,J

L1,p.o. and the L2 periodic orbit stable
manifold W s,J

L2,p.o. are closed curves that intersect transversally. A point in the plane x = 1−µ belonging
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Figure 3.1: (a) The projection of invariant manifolds W u,J
L1,p.o. and W s,J

L2,p.o. in the region J of the position space. (b)

The first two Poincaré cuts of the invariant manifolds with the plane x = 1 − µ. (c) The existence of a transversal

(2, 2)-heteroclinic orbit in the J region.

to Γu,J
L1,q ∩ Γs,J

L2,p is called a (q, p)-heteroclinic point because such a point corresponds to a heteroclinic
orbit going from the L1 Liapunov orbit to the L2 Liapunov orbit.

Figure 3.1(b) shows the curves Γu,J
L1,q for q = 1, 2 and Γs,J

L2,p for p = 1, 2. Notice that Γu,J
L1,2 and Γs,J

L2,2

intersect in two points (the dots in Figure 3.1(b)). Thus, the minimum q and p for a heteroclinic point
to appear for this particular value of C is q = 2 and p = 2. The (2, 2)-heteroclinic points can each be
forward and backward integrated to produce heteroclinic trajectories going from the L1 Liapunov orbit
to the L2 Liapunov orbit. We show one of the heteroclinic orbits in Figure 3.1(c).

Chains of Homoclinic Orbits and Heteroclinic Cycles. Equations (2.1) have the symmetry
s : (x, y, ẋ, ẏ, t) → (x,−y,−ẋ, ẏ,−t), so if we know the unstable manifold of the periodic orbit, the
corresponding stable manifold is obtained using symmetry. This observation can be used to find the
reverse trajectory, going from the L2 periodic orbit to the L1 periodic orbit. It would be the mirror
image (about the x-axis) of the trajectory in Figure 3.1(c), with the direction arrows reversed. These two
heteroclinic connections together form a symmetric heteroclinic cycle. Similarly, we can also use a com-
bination of the same analytical and numerical techniques to show the existence of transversal homoclinic
orbits associated to the L1 and L2 periodic orbits in both the interior and exterior regions.

Combining homoclinic and heteroclinic orbits of the same energy, generates a homoclinic-heteroclinic
chain, which connect asymptotically the L1 and L2 periodic orbits to each other. As will be seen, these
chains imply a complicated dynamics connecting the interior, exterior, and Jupiter regions. In the next
section, we shall state a slightly simplified version of a theorem in Koon et al. [1999a]. This theorem
shows the existence of a large class of interesting orbits near such a chain which a comet can follow in its
rapid transition between the interior and the exterior regions passing through the Jupiter region.

Resonance Transtion of Comet Oterma. We choose the Sun-Jupiter system (µ = 0.0009537), and
a Jacobi constant value similar to that of Oterma during its Jupiter encounters (C = 3.03). Using the
above methods, we get an interior region orbit homoclinic to the L1 periodic orbit, an exterior region
orbit homoclinic to the L2 periodic orbit, and a heteroclinic cycle connecting the L1 and L2 periodic
orbits. The union of these orbits is a homoclinic-heteroclinic chain. See Figure 1.1. Note that the interior
homoclinic orbit is in 3:2 resonance with Jupiter and the exterior homoclinic orbit is in 2:3 resonance
with Jupiter. Observe how closely the orbit of Oterma shadows this chain. Therefore, it is reasonable for
us to conclude that the dynamical channels near this chain provide the orbits for such a transition.



4 Existence and Numerical Construction of Transitional Orbits.

To state the main theorem of Koon et al. [1999a] precisely, we recall some basic ideas of global bifurcation
theory. For more details, consult Moser [1973], Llibre, Martinez and Simó [1985] and Wiggins [1990].

The idea of reducing the study of the global orbit structure to the study of an associated discrete map
is due to Poincaré, who utilized the method in his studies of the restricted 3-body problem. Koon et al.
[1999a] use the chain of two homoclinic orbits and one symmetric heteroclinic cycle (generated above) to
construct a suitable Poincaré map. Our choice of Poincaré map allows us to study the complex global
orbit structure near the chain. We find an invariant set for this map near some transversal homoclinic and
heteroclinic points along the chain where “Smale horseshoe”-like dynamics exist. We then use symbolic
dynamics to characterize the chaotic motion in a neighborhood of the chain as it transitions intermittently
through the interior, Jupiter and exterior regions.

Construction of Poincaré Map with Domain U . We construct (Figure 4.1) a Poincaré map P
transversal to the flow whose domain U consists of four different squares Ui, i = 1, 2, 3, 4, located in
different regions of phase space in the neighborhood of the chain. Squares U1 and U4 are contained in

U3

U2

U4U1
Interior
Region

Exterior
Region

Jupiter
Region

y = 0

x = 1−µ

x = 1−µ

y = 0

Figure 4.1: The construction of a suitable Poincaré map.

the surface y = 0 and each centers around a transversal homoclinic point in the interior and the exterior
region, respectively. Squares U2 and U3 are contained in the surface x = 1 − µ (y < 0 and y > 0,
respectively) and center around transversal heteroclinic points in the Jupiter region which are symmetric
with respect to each other. Clearly, for any orbit which passes through a point q in one of the squares and
whose images and pre-images (Pn(q), n = 0,±1,±2, . . . ) all remain in the domain U , the whereabouts
of Pn(q) (as n increases or decreases) can provide some of the essential information about the history of
the particular orbit. We record this history with a bi-infinite sequence. This technique of studying only
the set of points that forever remain in the domain U (the invariant set Λ = ∩∞

n=−∞P
n(U)) provides us

with all the periodic solutions as well as the recurrent solutions in the neighborhood of the chain.

Application of Symbolic Dynamics. We construct a set of bi-infinite sequences with two families
of symbols. The first family is a subshift of finite type with four symbols {u1, u2, u3, u4}, used to track an
orbit with respect to the four squares U1, U2, U3, U4. The symbol ui is recorded every time the Ui square
is pierced by the orbit. Subshift here means that among the set of all bi-infinite sequences of four symbols,
(i.e., (. . . , ui−1 ;ui0 , ui1 , ui2 , . . . ) where ij ranges from 1 to 4), certain sequences where the adjacent entries
in the sequence violate certain relations are not allowed. For example, from U1, the (forward) flow cannot
get to U4 without passing through other squares. Hence, in the bi-infinite sequence, the symbol u1 cannot
be followed by u4. The relations can be defined by the transition matrix: (A)kl = 1 if the ordered pair
of symbols uk, ul may appear as adjacent entries in the symbolic sequence, and (A)kl = 0 if the ordered
pair of symbols uk, ul may not appear as adjacent entries. For example, since u1 cannot be followed by
u4, we have (A)14 = 0. The second family is a full shift of infinite type with symbols of positive integers
greater than a fixed integer rmin. This set of bi-infinite sequences of positive integers is used to keep track
of the number of integer revolutions that the projection of an orbit winds around either L1 or L2 when
the orbit enters the equilibrium regions R1 or R2, respectively.



Main Theorem on Global Orbit Structure. We state a simplified version of the main theorem of
Koon et al. [1999a], which provides a symbolic dynamics description of the global orbit structure of the
PCR3BP near a chain C of homoclinic orbits and a symmetric heteroclinic cycle. Suppose C is made up
of a symmetric (q2, p2)-heteroclinic cycle in the Jupiter region together with two homoclinic orbits, one
of which is a (q1, p1) orbit in the interior region and the other is a (q3, p3) orbit in the exterior region.

Theorem 4.1. Consider an element (u, r) ∈ Σ̄ with rj ≥ rmin for all j. Then there are initial conditions,
unique in a neighborhood of the given chain of two homoclinic orbits and one symmetric heteroclinic cycle,
such that the following statements are true.

For an element of type α = (. . . , (ui−1 , r−1); (ui0 , r0), (ui1 , r1), (ui2 , r2), . . . ), the orbit corresponding
to such conditions starts at Ui0 and goes to Ui1 if (A)i0i1 = 1. This orbit passes through either the
equilibrium region R1 or R2 depending on whether the initial index i0 is 1, 3 or 2, 4. If i0 = 1, 3, the
projection of the orbit winds around L1 for r0 revolutions inside the region R1 before leaving for Ui1 .
Otherwise, it winds around L2 for r0 revolution before leaving for Ui1 . After that, the same process
begins with (ui1 , r1) in place of (ui0 , r0) and (ui2 , r2) in place of (ui1 , r1), etc. For negative time a similar
behavior is described for (ui−1 , r−1), (ui0 , r0), etc.

For this orbit, the number of revolutions that the comet winds around Jupiter or the Sun (in the
interior or exterior region) is a constant which depends on the region and the given chain of homoclinic
orbits and heteroclinic cycle. For the Jupiter region, the number is (q2 + p2 − 1)/2. For the interior and
exterior regions, the number is q1 + p1 − 1 and q3 + p3 − 1 respectively.

Numerical Construction of Orbits with Prescribed Itineraries. We have studied the complex
orbit structure in the neighborhood of a chain. What we have found is an invariant set of orbits, to each
of which we can attach an itinerary (e.g., (. . . , X, J, S, J, . . . ) in the informal notation) describing the
future and past history of the orbit for all time. Here, the symbols {S, J,X} denote the location of the
orbit in the interior (Sun), Jupiter, or exterior regions, respectively. Furthermore, Theorem 4.1 shows us
that all permissible itineraries exist in the neighborhood of a chain.

While the invariant set is a useful theoretical construct for the classification of the dynamics, its
infinite nature does not directly give usable trajectories. However, guided by the proof, computational
and numerical methods can be brought to bear which iteratively approximate the invariant set and allow
us to develop a systematic procedure to numerically construct orbits with finite prescribed itineraries.

The construction of the invariant set uses successive iterations of the Poincaré map P . Finite areas of
finite central block itineraries evolved under successive application of the map P into a “cloud of points,”
the invariant set Λ. If we truncate the construction of the invariant set at some finite number of iterations
of P , we find regions of phase space with a finite itinerary. The itinerary of an orbit in this region is robust
in the sense that all nearby orbits in phase space have the same finite itinerary. Thus, by truncating our
construction of the invariant set Λ at some finite number of applications of P , we generate a set of robust
orbits with different finite itineraries. The sets of orbits with different itineraries are easily visualizable
on our chosen Poincaré section as areas in which all the orbits have the same finite itinerary. We will
also no longer be limited to a small neighborhood of a chain, but can obtain more global results.

Example Itinerary: (J,X;J, S, J). We illustrate the numerical construction of orbits with prescribed
finite (but arbitrarily large) itineraries. As our example, chosen for simplicity of exposition, we construct
an orbit with the central block (J,X;J, S, J). To link the present numerical construction with the earlier
theoretical framework, we adopt the following convention. The U1 and U4 (Poincaré) sections will be the
planes (y = 0, x < 0) in the interior region, and (y = 0, x < −1) in the exterior region, respectively. The
U2 and U3 sections will be the planes (x = 1 − µ, y < 0) and (x = 1 − µ, y > 0) in the Jupiter region,
respectively. A key observation here is a result of McGehee [1969] which has shown that the invariant
manifold tubes separate two types of motion. See Figures 4.2(a) and 4.2(b). The orbits inside the tube
transit from one region to another; those outside the tubes bounce back to their original region.

Since the upper curve in Figure 4.2(b) is the Poincaré cut of the stable manifold of the periodic orbit
around L1 in the U3 plane, a point inside that curve is an orbit that goes from the Jupiter region to the
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Figure 4.2: (a) The projection of invariant manifolds W s,J
L1,p.o. and W u,J

L2,p.o. in the region J of the position space. (b) A

close-up of the intersection region between the Poincaré cuts of the invariant manifolds on the U3 section (x = 1−µ, y > 0).

(c) Intersection between image of ∆X and pre-image of ∆S labeled (J, X; J, S, J). (d) Example orbit passing through

(J, X; J, S, J) region of (c).

interior region, so this region can be described by the label (;J, S). Similarly, a point inside the lower
curve of Figure 4.2(b) came from the exterior region into the Jupiter region, and so has the label (X; J).
A point inside the intersection ∆J of both curves is an (X;J, S) orbit, so it makes a transition from the
exterior region to the interior region, passing through the Jupiter region. Similarly, by choosing Poincaré
sections in the interior and the exterior region, i.e., in the U1 and U4 plane, we find the intersection region
∆S consisting of (J ;S, J) orbits, and ∆X , which consists of (J ;X, J) orbits.

Flowing the intersection ∆X forward to the Jupiter region, it stretches into the strips in Figure
4.2(c). These strips are the image of ∆X (i.e., P (∆X)) under the Poincaré map P , and thus get the
label (J,X;J). Similarly, flowing the intersection ∆S backward to the Jupiter region, it stretches into
the strips P−1(∆S) in Figure 4.2(c), and thus have the label (;J, S, J). The intersection of these two
types of strips (i.e., ∆J ∩ P (∆X) ∩ P−1(∆S)) consist of the desired (J,X;J, S, J) orbits. If we take any
point inside these intersections and integrate it forward and backward, we find the desired orbits. See
Figure 4.2(d).



5 Earth to Moon Transfer with Ballistic Capture

Shoot the Moon. The techniques developed thus far, especially the construction of orbits with pre-
scribed itineraries, have been used to produce the “Petit Grand Tour” of Jovian moons mentioned above
(see Figure 1.2). Similar techniques also produce a low-fuel transfer to the Moon, like the 1991 Hiten
mission which effected a ballistic capture at the Moon with less propulsion than a standard Hohmann
transfer (Belbruno and Miller [1993]). We refer to this mission concept as “Shoot the Moon.”

Our approach to effect an Earth to Moon transfer with a ballistic (“free”) capture at the Moon builds
on the theoretical understanding developed in Koon et al. [1999a] as well as the following three key
ideas: (1) treat the Sun-Earth-Moon-Spacecraft 4-body problem as two coupled circular restricted 3-
body problems, Sun-Earth-SC and Earth-Moon-SC systems, (2) use the stable and unstable manifolds of
periodic orbits about the Sun-Earth Lagrange points to provide a low energy transfer from Earth to the
stable manifolds of periodic orbits around the Earth-Moon Lagrange points, (3) use the stable manifolds
of the periodic orbits around the Earth-Moon Lagrange points to provide a ballistic capture about the
Moon. The construction is done mainly in the Sun-Earth rotating frame using a Poincaré section which
help to glue the Sun-Earth libration point trajectory with the lunar ballistic capture trajectory.

We start with the PCR3BP model to compute the invariant manifolds and use them to construct
the Sun-Earth libration point trajectory and the lunar ballistic capture trajectory. The final trajectory
starting from the Earth and ending in lunar capture is integrated in the model of 4-body bi-circular
problem where both the Moon and the Earth are assumed to move in circular orbits about the Earth
and the Sun respectively in the ecliptic, and the spacecraft is an infinitesimal mass point. Details of the
“Shoot the Moon” concept appears in Koon et al. [2000].

Earth to Moon Transfer Mechanism. To effect the Earth to Moon transfer, we compute Sun-Earth
invariant manifolds of an L2 periodic orbit, which leave the vicinity of the Earth and enter the region of
the Earth-Moon manifolds. We seek an orbit that launches from a 200 km altitude Earth parking orbit
and is drawn into a ballistic capture by the Moon. This involves the stable/unstable manifold symmetry
and the behavior of orbits near the outside of the stable/unstable manifold tubes (Koon et al. [1999a]).
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Figure 5.1: (a) Behavior of orbits near and outside the stable and unstable manifolds of the Sun-Earth L2 orbit in the

Earth region. (b) Intersection between Sun-Earth L2 orbit unstable manifold and Earth-Moon L2 orbit stable manifold

(small oval). (c) The Earth to Moon transfer with ballistic capture by the Moon.

We select Sun-Earth L2 periodic orbits within a range of energies, and compute their stable and
unstable manifolds in the Earth region. For a certain energy, consider a strip S (line with endpoints
q1 and q2) near the outside of the unstable manifold cut (right loop in Figure 5.1(a)) on a Poincaré
section passing through the Earth at x = 1 − µ. The points in this strip all have the same position,
but they differ in y-velocity. Using the general theory described in Koon et al. [1999a], it is known that



the points in strip S wind around the equilibrium point L2 for a different number of revolutions when
integrated backward. Since the orbits in the strip are outside of the unstable manifold tube, they will
fall back toward the Poincaré section. In other words, the pre-image of the strip P−1(S) wind around
the stable manifold (left loop). Using this observation, note that for fixed position, the slightest change
in ẏ (effected by a small ∆V , propulsive change in velocity) can move the pre-image of a point near the
unstable manifold cut to anywhere near the Poincarś cut of the stable manifold. Thus, for a point in the
Poincaré section near and outside the unstable manifold cut, we can use a small ∆V to take us back to a
200 km altitude Earth parking orbit near the outside of the stable manifold. We will therefore restrict our
Sun-Earth-SC 3-body energy to the range where the parking orbit position is near the stable manifold.

Lunar Ballistic Capture Trajectory. Next we obtain a trajectory approaching the Moon. The
stable and unstable manifolds of the Sun-Earth L2 orbit draw the spacecraft away from Earth and into
large revolutions about the Earth outside of the Moon’s orbit. This suggests using the stable manifolds
of the Earth-Moon L2 orbit to draw the spacecraft into the Moon’s vicinity for ballistic capture. We
patch these two trajectories where the Sun-Earth and Earth-Moon L2 orbit manifolds intersect.

Each trajectory within the Poincaré cut of the stable manifold (small oval in Figure 5.1(b)) is trans-
ported into the Moon region, where it will perform several circuits about the Moon in a state of temporary
capture. Among the points outside of but close to the Sun-Earth L2 orbit unstable manifold cut, there is
a trajectory which departs from a 200 km altitude Earth parking orbit. If we now also require this point
to fall within the Earth-Moon L2 orbit stable manifold, it is guaranteed to approach the Moon. Since the
energies of the Sun-Earth and Earth-Moon manifolds differ slightly, the intersections produced in this
manner require a small ∆V . By selecting appropriate energies properly in both systems, this small ∆V
may be eliminated, meaning a completely free transfer to lunar capture is possible!

We use the above procedure to find initial guesses in the coupled 3-body model which we adjust finely
to obtain a true 4-body bi-circular model trajectory. Figure 5.1(c) is the final end-to-end trajectory in
inertial coordinates. A ∆V of 34 m/s is required at the location marked. Using the trajectory from the
bi-circular model, an end-to-end trajectory can be computed in the JPL ephemeris model using JPL’s
LTool (Libration Point Mission Design Tool) currently under development. This computation is the
subject of a future paper.

6 Optimal Control for Halo Orbit Missions

This section describes some results of Serban et al. [2000] in the larger context of the present paper.
Genesis is a solar wind sample return mission. It is one of NASA’s first robotic sample return missions,
scheduled for launch in January 2001 to a 3-dimensional halo orbit in the vicinity of the Sun-Earth L1

Lagrange point. Once there, the spacecraft will remain for two years to collect solar wind samples before
returning them to the Earth for study. The Genesis trajectory (see Figure 6.1(a)) was designed using
dynamical systems theory. The three year mission, from launch all the way to Earth return, requires only
a single small deterministic maneuver (less than 6 m/s) when injecting onto the halo orbit.

The Trajectory Correction Maneuver (TCM) Problem. The most important error in the launch
of Genesis is the launch velocity error. The one sigma expected error is 7 m/s for a boost of nearly 3200
m/s from a circular 200 km altitude Earth orbit. Such an error is large because halo orbit missions are
extremely sensitive to launch errors. Typical planetary launches can correct launch vehicle errors 7 to 14
days after the launch. This correction maneuver is called TCM1, being the first TCM of any mission. In
contrast, for orbits such as the Genesis transfer trajectory, the correction maneuver ∆V grows sharply in
inverse proportion to the time from launch. For a large launch vehicle error, which is possible in Genesis’
case, the TCM1 can quickly grow beyond the capability of the spacecraft’s propulsion system.

The Genesis spacecraft, built in the spirit of NASA’s new low cost mission approach, is very basic.
This makes the performance of an early TCM1 difficult and risky. It is desirable to delay TCM1 as long
as possible, even at the expense of expenditure of the ∆V budget. In fact, Genesis would prefer TCM1 be
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Figure 6.1: (a) The Genesis Discovery Mission trajectory. (b) Schematic of optimal control trajectory correction maneuver

problem.

performed at 2 to 7 days after launch, or even later. However, beyond launch + 24 hours, the correction
∆V based on traditional linear analysis can become prohibitively high.

The desire to increase the time between launch and TCM1 compels one to use a nonlinear approach,
based on combining dynamical systems theory with optimal control techniques. In joint work with
Serban and Petzold of the University of California, Santa Barbara, we have explored two similar but
slightly different approaches and are able to obtain in both cases an optimal maneuver strategy that fits
within the Genesis ∆V budget of 450 m/s. (1) HOI technique: we use optimal control techniques to
retarget the halo orbit with the original nominal trajectory as the initial guess. (2) MOI technique: we
target the stable manifold. Both methods yield good results. In this paper, we will discuss only briefly
the HOI technique. For more details, see Serban et al. [2000].

Recasting TCM as Trajectory Planning Problem. We recast the TCM problem as a spacecraft
trajectory planning optimization problem. The ∆V caused by perturbation in the launch velocity and by
different delays in TCM1 becomes exactly the sensitivity analysis of the optimal solution. COOPT, the
software package we use is an excellent tool in solving this type of problem, both in providing an optimal
solution and in studying the sensitivity of different parameters. It is developed by the Computational
Science and Engineering Group at UC Santa Barbara (see Users’ Guide [1999]).

A halo orbit insertion trajectory design problem can be simply posed as:

Find the maneuver times and sizes to minimize fuel consumption (∆V ) for a trajectory
starting near Earth and ending on the specified L1 halo orbit at a position and with a
velocity consistent with the HOI time.

We assume that the evolution of the spacecraft is described by a set of six ODEs, ẋ = f(t,x) where
x = [xp;xv] ∈ R6 contains both positions (xp) and velocities (xv). In this paper, we use the 3-dimensional
CR3BP model; other models will be investigated in future work.

To deal with the discontinuous nature of the control force (∆V ), the equations of motion are solved
simultaneously on each interval between two maneuvers. Let the maneuvers M1,M2, ...,Mn take place
at times Ti, i = 1, 2, ..., n and let xi(t), t ∈ [Ti−1, Ti] be the solution on the interval [Ti−1, Ti] (see Figure
6.1(b)). Position continuity constraints are imposed at each maneuver, that is, xp

i (Ti) = xp
i+1(Ti), i =

1, 2, ..., n− 1. In addition, the final position is forced to lie on the halo orbit, that is, xp
n(Tn) = xp

H(Tn),
where the halo orbit is parameterized by the HOI time Tn. Additional constraints dictate that the first
maneuver is delayed by at least a prescribed amount TCM1min after launch, that is, T1 ≥ TCM1min.



With a cost function C(∆vi) =
∑n

i=1 ‖∆vi‖. defined as some measure of the velocity discontinuities
∆vi = xv

i+1(Ti) − xv
i (Ti), i = 1, 2, ..., n − 1, and ∆vn = xv

H(Tn) − xv
n(Tn), the optimization problem

becomes minTi,xi,∆vi
C(∆vi), subject to the constraints.

In many optimal control problems, obtaining an optimal solution is not the only goal. The influence
of problem parameters on the optimal solution (the so called sensitivity of the optimal solution) is also
needed. In this paper, we are interested in estimating the (∆V ) caused by perturbations in the launch
velocity (εv0) and by different delays in the first maneuver (TCM1). In COOPT, we make use of the
Sensitivity Theorem to give us the desired sensitivity results.

Halo Orbit Insertion (HOI) Problem. In this problem we directly target the selected halo orbit
with the last maneuver taking place at the HOI point. Using the optimization procedure described above,
we compute the optimal cost transfer trajectories for various combinations of TCM1min (ranging from
1 day to 5 days) and εv0 (ranging from −7 m/s to +7 m/s).

The optimization procedure was applied for all values of TCM1min and εv0 in the ranges of interest.
We first investigated the possibility of correcting for errors in the launch velocity using at most two
maneuvers (n = 2). Except for the cases in which there is no error in the launch velocity (and for which
the final optimal transfer trajectories have only one maneuver at HOI), the first correction maneuver is
always on the prescribed lower bound TCM1min. For all cases investigated, halo orbit insertion takes
place at most 18.6 days earlier or 28.3 days later than in the nominal case (THOI = 110.2 days).

Several conclusions can be drawn. The main contribution of dynamical systems theory to the compu-
tation of optimal trjaectory correction maneuvers is in the construction of good initial guess trajectories
in sensitive regions. Moreover, for all cases that we investigated, the optimal costs are well within the
∆V budget allocated for trajectory correction maneuvers (450 m/s for the Genesis mission). The cost
function is very close to being linear with respect to both TCM1min time and launch velocity error. Also,
the halo orbit insertion time is always close enough to that of the nominal trajectory as not to affect
either the collection of the solar wind or the rest of the mission.

7 Conclusions and Future Work.

This paper used dynamical systems techniques to investigate heteroclinic connections and resonance
transitions in the PCR3BP. A main result is the discovery of a heteroclinic connection between L1 and
L2 equal energy periodic orbits and the dynamical description of nearby orbits. This augments the
known homoclinic orbits associated to the L1 and L2 Liapunov periodic orbits (McGehee [1969] and
Llibre, Martinez and Simó [1985]). By linking these heteroclinic connections with homoclinic orbits on
the same energy surface, we find dynamical channels providing a fast transport mechanism between the
interior and exterior Hill’s regions (not to be confused with Arnold diffusion). This should contribute
to the transport mechanisms connecting mean motion resonances, and in particular, those mechanisms
linking interior and exterior resonances via the Jupiter capture region. By comparing observations of the
orbits of Jupiter comets like Oterma with these dynamical channels, we conclude that the comets are
guided by them (Figure 1.1). Moreover, these dynamical channels could be exploited by spacecraft to
explore a large region of space around any planet or moon system using low-fuel controls.

Extension to Three Dimensions. We plan to extend our techniques to the 3-dimensional CR3BP
by seeking homoclinic and heteroclinic orbits associated with 3-dimensional periodic “halo” and quasi-
periodic “quasi-halo” and Lissajous orbits about L1 and L2. Their union is a set of 3-dimensional
homoclinic-heteroclinic chains around which symbolic dynamics could catelog a variety of exotic orbits.

The 3-dimensional chains would provide an initial template for the construction of actual spacecraft
trajectories. By presenting a more complete portrait of the phase space geometry near L1 and L2, the
3-dimensional channels will be of enormous benefit in the design and control of constellations of spacecraft
in these regions. The homoclinic-heteroclinic structures suggest natural low-fuel paths for deployment of
constellation spacecraft to and from Earth.



Coupling of Two Three-Body Systems. To obtain a better grasp of the dynamics governing trans-
port between adjacent planets (or moons), we could apply our methodology to the coupled PCR3BP. The
coupled PCR3BP considers two nested co-planar 3-body systems, such as for two adjacent giant planets
competing for control of the same comet (e.g., Sun-Jupiter-comet and Sun-Saturn-comet). When close
to the orbit of one of the planets, the comet’s motion is dominated by the corresponding planet’s 3-body
dynamics. Between the two planets, the comet’s motion is mostly heliocentric, but is precariously poised
between two competing 3-body dynamics. In this region, heteroclinic orbits connecting periodic orbits of
two different 3-body systems may exist, leading to complicated transfer dynamics between two adjacent
planets. See Figure 1.2.

This transfer dynamics, which may be realized in actual comet behavior, could be exploited for free
transfers of spacecraft between adjacent moons in the Jovian and Saturnian systems (Lo and Ross [1998]).
For instance, one could conduct a “Petit Grand Tour” of the Jovian moon system, an example of which
is shown in Figure 1.2. By systematically seeking heteroclinic connections between libration point orbits
of adjacent moons, one could design trajectories which transfer from the vicinity of one moon to another
using little fuel. Furthermore, the “Shoot the Moon” trajectory suggests the use of exotic low-fuel
transfers between a planet and its moon (see Figure 5.1(c)).

Merging Optimal Control and Stabilization with Dynamical Systems Theory. The construc-
tion of exotic spacecraft orbits using homoclinic-heteroclinic chains requires optimal, fuel minimizing
impulsive and continuous propulsion thruster controls to navigate these dynamically sensitive regions of
phase space. A deeper understanding of the dynamical structure of the restricted 3-body problem may
suggest alternative formulations of the optimizing scheme which are based more on the geometry of the
phase space. Algorithms could be developed with the natural dynamics built in, thereby yielding better
convergence properties. It would also be interesting to explore additional ways to use optimal control in
the presence of mechanics (as in, for example, Koon and Marsden [1997]).

In addition to the optimal control problem of getting to a halo orbit, there are well known techniques
for stabilizing the dynamics once one gets there. Some techniques are related to the general theory of
stabilizing dynamics near saddle points and homoclinic or heteroclinic orbits, as in Bloch and Marsden
[1989]. In addition, it would be of interest to explore the use of other stabilization techniques that make
use of the mechanical structure for problems of this sort, as in Bloch, Leonard and Marsden [1997].

Symplectic Integrators. The use of symplectic integrators for the long time integrations of solar
system dynamics is well known through the work of Tremaine, Wisdom and others. The area of integration
algorithms for mechanical systems continues to develop and be implemented; see for example, Kane,
Marsden and Ortiz [1999], and Kane, Marsden, Ortiz and West [1999] and references therein. These
techniques are very effective for both conservative mechanical systems as well as systems with forcing,
such as controlled systems. It would be of interest to explore these numerical methods in the context of
space mission design and other orbital mechanics problems.

Four or More Body Problems. While the PCR3BP model provides an adequate explanation for a
class of Jupiter comets whose Jacobi constant is close to (and less than) C2 and whose motion is close to
the plane of Jupiter’s orbit, it fails to explain resonance transition phenomena for high inclination Jupiter
comets and comets not dominated solely by Jupiter. For these, other effects such as out-of-plane motion
and perturbation by other giant planets, notably Saturn, are quite strong and need to be considered.
The study of this second class of comets require the complete storehouse of tools needed in the study of
the near-Earth asteroids, regarded by many as the most challenging topic in celestial mechanics.

Since mean motion resonances (mostly with Jupiter) and associated transport mechanisms play the
dominant role in solar system material transport, the general theory of Koon et al. [199a] lays a foundation
for future studies in this direction. We may need to consider other more complicated models like the full
3-dimensional CR3BP and the coupled PCR3BP as mentioned above. As Lo and Ross [1997] suggested,
further exploration of the phase space structure as revealed by the homoclinic-heteroclinic structures and
their association with mean motion resonances may provide deeper conceptual insight into the evolution
and structure of the asteroid belt (interior to Jupiter) and the Kuiper Belt (exterior to Neptune), plus



the transport between these two belts and the terrestrial planet region. See Figure 7.1(a).
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Figure 7.1: (a) Dynamical channels in the solar system. We plot the (local) semi-major axis versus the orbital eccentricity.

We show the L1 and L2 manifolds for each of the giant outer planets. Notice the intersections between manifolds of adjacent

planets, which leads to chaotic transport. Also shown are the asteroids, comets, and Kuiper Belt objects. (b) The zodiacal

dust ring around the Earth’s orbit, as modeled by Earth’s L1 and L2 stable and unstable manifolds. We show the Sun-Earth

rotating frame. Notice the “clumps” in Earth’s orbit.

Potential Earth-impacting asteroids may utilize the dynamical channels as a pathway to Earth from
nearby, seemingly harmless heliocentric orbits in resonance with the Earth. The same dynamics governing
libration point space missions such as the Genesis Discovery Mission, which is on a natural Earth collision
orbit, is also the dynamics that could bring unexpected Earth impactors. This phenomena has been
observed recently in the impact of comet Shoemaker-Levy 9 with Jupiter, which was in 2:3 resonance
with Jupiter (one of the resonances dynamically connected to the Jupiter region) just before impact.

Zodiacal Dust Cloud. Numerical simulations of the orbital evolution of asteroidal dust particles show
that the Earth is embedded in a circumsolar ring of asteroidal dust known as the zodiacal dust cloud.
Both simulations and observations reveal that the zodiacal dust cloud has structure. When viewed in the
Sun-Earth rotating frame, there are several high density clumps (∼10% greater than the background)
which are mostly evenly distributed throughout the Earth’s orbit. The dust particles are believed to
spiral in towards the Sun from the asteroid belt, becoming trapped temporarily in exterior mean motion
resonances with the Earth. We suspect that the gross morphology of the ring is given by a simpler
CR3BP model involving the homoclinic and heteroclinic structures (the dynamical channels) associated
with L1 and L2 (Lo and Ross [1997]). See Figure 7.1(b).

The drag forces do not destroy the dynamical channel structure, but instead seem to lead to conver-
gence onto the structure for particles spiraling in from the inner asteroid belt. Once trapped in a channel,
the dynamics naturally lead to transport (via an Earth encounter) into the interior region, where drag
forces dominate once more.

Acknowledgments. We thank Gerard Gómez and Josep Masdemont for helpful discussions and for sharing their
wonderful software tools. We thank Donald Yeomans and Alan Chamberlin for the JPL Horizons integrator which generated
the comet orbits. We thank Edward Belbruno and Brian Marsden for an advanced copy of their comet paper. We also
wish to thank the following colleagues for helpful discussions and comments: Brian Barden, Julia Bell, Peter Goldreich,
Kathleen Howell, Angel Jorba, Andrew Lange, Jaume Llibre, Regina Mart́inez, Richard McGehee, William McLaughlin,
Linda Petzold, Nicole Rappaport, Ralph Roncoli, Carles Simó, Scott Tremaine, Stephen Wiggins, and Roby Wilson.
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Gómez, G., A. Jorba, J. Masdemont, and C. Simó [1991] Study Refinement of Semi-Analytical Halo Orbit Theory, Final
Report, ESOC Contract No.: 8625/89/D/MD(SC), Barcelona, April, 1991.

Howell, C., B. Barden and M. Lo [1997] Application of dynamical systems theory to trajectory design for a libration point
mission, The Journal of the Astronautical Sciences 45(2), April 1997, 161-178.

Kane, C, J.E. Marsden, and M. Ortiz [1999] Symplectic energy momentum integrators. J. Math. Phys., 40, 3353–3371.

Kane, C, J.E. Marsden, M. Ortiz and M. West [1999] Variational Integrators and the Newmark Algorithm for Conservative
and Dissipative Mechanical Systems (Int. J. Num. Meth. Eng., to appear.).

Koon, W.S. and J.E. Marsden [1997] Optimal control for holonomic and nonholonomic mechanical systems with symmetry
and Lagrangian reduction. SIAM J. Control and Optim. 35, 901-929.

Koon W.S., M.W. Lo, J.E. Marsden and S.D. Ross [1999a], Heteroclinic Connections between Liapunov Orbits and
Resonance Transitions in Celestial Mechanics, Chaos, to appear.

Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [1999b], The Genesis Trajectory and Heteroclinic Connections,
AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, 1999, AAS99-451.

Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000], Shoot the Moon, AAS/AIAA Astrodynamics Specialist
Conference, Florida, 2000, AAS 00-166.
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